Skip to main content

Advertisement

Log in

Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Despite several efforts to find suitable alternatives to autologous bone, no bone substitute currently available provides the same characteristics and properties. Nevertheless, among the wide range of materials proposed as bone substitutes, calcium phosphate materials represent the most promising category and the present study is aimed at improving the knowledge on non-stoichiometric magnesium-doped hydroxyapatite substitutes (Mg-HA), tested in two different formulations: Mg-HA Putty and Mg-HA Granules. These bone substitutes were implanted bilaterally into iliac crest bone defects in healthy sheep and comparative histological, histomorphometric, microhardness and ultrastructural assessments were performed 9, 12, 18 and 24 months after surgery to elucidate bone tissue apposition, mineralization and material degradation in vivo. The results confirmed that the biomimetic bone substitutes provide a histocompatible and osteoconductive structural support, during the bone formation process, and give essential information about the in vivo resorption process and biological behavior of biomimetic bone substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Greenwald AS, Boden S, Goldberg VM, Khan Y, Laurencin CT, Rosier RN. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83-A(Suppl 2 Pt 2):98–103.

    Google Scholar 

  2. US Bone Grafts Industry. Global Industry Analysts Inc; 2011. http://www.reportlinker.com/p0119465-summary/World-Bone-Grafts-Market.html.

  3. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84-A:716–20.

    Google Scholar 

  4. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42:S16–21.

    Article  Google Scholar 

  5. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36S:S20–7.

    Article  Google Scholar 

  6. De Long W, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89:649–58.

    Article  Google Scholar 

  7. Cornell CN. Osteobiologics. Bull Hosp Jt Dis. 2004;62:13–7.

    Google Scholar 

  8. Oliveira AL, Mano JF, Reis RL. Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Curr Opin Sol St M. 2003;7:309–18.

    Article  Google Scholar 

  9. Tampieri A, Sprio S, Sandri M, Valentini F. Mimicking natural bio-mineralization processes: a new tool for osteochondral scaffold development. Trends Biotechnol. 2011;29:526–35.

    Article  Google Scholar 

  10. Panzavolta S, Torricelli P, Bracci B, Fini M, Bigi A. Functionalization of biomimetic calcium phosphate bone cements with alendronate. J Inorg Biochem. 2010;104:1099–106.

    Article  Google Scholar 

  11. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–83.

    Article  Google Scholar 

  12. Larsson S. Calcium phosphates: what is the evidence? J Orthop Trauma. 2010;24:S41–5.

    Article  Google Scholar 

  13. Martini L, Staffa G, Giavaresi G, Salamanna F, Parrilli A, Serchi E, Pressato D, Arcangeli E, Fini M. Long-term results following a cranial hydroxyapatite prosthesis implantation in a large skull defect model. Plast Reconstr Surg. 2012;129:625e–35e.

    Article  Google Scholar 

  14. Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today. 2010;15:547–52.

    Article  Google Scholar 

  15. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substitute hydroxyapatite: from synthesis o in vivo behaviour. J Mater Sci Mater Med. 2008;19:239–47.

    Article  Google Scholar 

  16. Ren F, Leng Y, Xin R, Ge X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.

    Article  Google Scholar 

  17. Yamasakia Y, Yoshidab Y, Okazaki M, Shimazuc A. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials. 2003;24:4913–20.

    Article  Google Scholar 

  18. Caneva M, Botticelli D, Stellini E, Sousa SL, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs. Clin Oral Impl Res. 2011;22:512–7.

    Article  Google Scholar 

  19. Crespi R, Capparè P, Gherlone E. Magnesium- enriched hydroxyapatite compared to calcium sulfate in the healing of human extraction sockets: radiographic and histomorphometric evaluation at 3 months. J Periodontol. 2009;80:210–8.

    Article  Google Scholar 

  20. Crespi R, Capparè P, Gherlone E. Dental implants placed in extraction sites grafted with different bone substitutes: radiographic evaluation at 24 months. J Periodontol. 2009;80:1616–21.

    Article  Google Scholar 

  21. Checchi V, Savarino L, Montevecchi M, Felice P, Checchi L. Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: a pilot study. Int J Oral Maxillofac Surg. 2011;40:526–32.

    Article  Google Scholar 

  22. Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G. Biomimetic Mg- and MgCO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc. 2006;26:2593–601.

    Article  Google Scholar 

  23. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2:595–610.

    Article  Google Scholar 

  24. Bohner M, Galea L, Doebelin N. Calcium phosphate bone graft substitutes: failure and hopes. J Europ Cer Soc. 2012;32:2663–71.

    Article  Google Scholar 

  25. Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 1999;44:31–43.

    Article  Google Scholar 

  26. Tampieri A, Celotti G, Landi E. From biomimetic apatites to biologically inspired composites. Anal Bioanal Chem. 2005;381:568–76.

    Article  Google Scholar 

  27. Bertinetti L, Tampieri A, Landi E, Martra G, Coluccia S. Punctual investigation of surface sites of HA and magnesium-HA. J Europ Cer Soc. 2006;26:987–91.

    Article  Google Scholar 

  28. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.

    Article  Google Scholar 

  29. Figueiredo M, Henriques J, Martins G, Guerra F, Judas F, Figueiredo H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes-comparison with human bone. J Biomed Mater Res Part B Appl Biomater. 2010;92B:409–19.

    Google Scholar 

  30. Matè-Sanchez de Val JE, Calvo Guirado JL, Delgado-Ruiz RA, Ramírez-Fernández MP, Negri B, Abboud M, Martínez IM, de Aza PN. Physical properties, mechanical behavior, and electron microscopy study of a new α-TCP block graft with silicon in an animal model. J Biomed Mater Res A. 2012;100:3446–54.

    Article  Google Scholar 

  31. Ramírez-Fernández MP, Calvo-Guirado JL, Maté-Sánchez Del Val JE, Delgado-Ruiz RA, Negri B, Barona-Dorado C. Ultrastructural study by backscattered electron imaging and elemental microanalysis of bone-to-biomaterial interface and mineral degradation of porcine xenografts used in maxillary sinus floor elevation. Clin Oral Implants Res. 2013;24:523–30.

    Article  Google Scholar 

  32. Ramírez-Fernández MP, Calvo-Guirado JL, Delgado-Ruiz RA, Maté-Sánchez del Val JE, Negri B, Diago MP. Ultrastructural study by backscattered electron imaging and elemental microanalysis of biomaterial-to-bone interface and mineral degradation of bovine xenografts in maxillary sinus floor elevation. Clin Oral Implants Res. 2013;24:645–51.

    Article  Google Scholar 

  33. Schouten C, Meijer GJ, van den Beucken JJ, Spauwen PH, Jansen JA. A novel implantation model for evaluation of bone healing response to dental implants: the goat iliac crest. Clin Oral Implants Res. 2010;21:414–23.

    Article  Google Scholar 

  34. Biemond JE, Eufrásio TS, Hannink G, Verdonschot N, Buma P. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures. J Mater Sci Mater Med. 2011;22:917–25.

    Article  Google Scholar 

  35. Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res. 2007;80A:94–101.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. M. C. Maltarello for his excellent assistance in EDS investigation and also to Mr. Keith Smith for his assistance in language supervision. This paper was partially supported by Rizzoli Orthopaedic Institute, “5 PER MILLE Project-Year 2010”.

Conflict of interest

This study was supported by a grant from Fin-Ceramica Faenza S.p.A., Faenza (RA), Italy (for providing biomaterial, costs of animals, animal housing and analyses). Dolcini L. and Pressato D. are employees of this company and declare the existence of a potential conflict of interest. The other authors declare no conflict of interest with the materials used in the present evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sartori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartori, M., Giavaresi, G., Tschon, M. et al. Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes. J Mater Sci: Mater Med 25, 1495–1504 (2014). https://doi.org/10.1007/s10856-014-5177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5177-5

Keywords

Navigation