Skip to main content
Log in

Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The consequences of the treatment of the squamous cell carcinomas of the upper aerodigestive tract (bone removal and external radiation therapy) are constant. Tissue engineering using biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSC) is considered as a promising alternative. We previously demonstrated the efficacy of BCP and total fresh bone marrow (TBM) in regenerating irradiated bone defect. The aim of this study was to know if adding MSC to BCP + TBM mixture could improve the bone formation in irradiated bone defects. Twenty-four Lewis 1A rats received a single dose of 20 Gy to the hind limbs. MSC were sampled from non-irradiated donors and amplified in proliferative, and a part in osteogenic, medium. 3 weeks after, defects were created on femurs and tibias, which were filled with BCP alone, BCP + TBM, BCP + TBM + uncommitted MSC, or BCP + TBM + committed MSC. 3 weeks after, samples were removed and prepared for qualitative and quantitative analysis. The rate of bone ingrowth was significantly higher after implantation of BCP + TBM mixture. The adding of a high concentration of MSC, committed or not, didn’t improve the bone regeneration. The association BCP + TBM remains the most efficient material for bone substitution in irradiated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gal TJ, Munoz-Antonia T. Radiation effects on osteoblasts in vitro: a potential role in osteoradionecrosis. Arch Otolaryngol Neck Surg. 2000;126:1124–8.

    Article  Google Scholar 

  2. Dudziak ME, Saadeh PB, Mehrara BJ, Steinbrech DS, Greenwald JA, Gittes GK, et al. The effects of ionizing radiation on osteoblast-like cells in vitro. Plast Reconstr Surg. 2000;106:1049–61.

    Article  Google Scholar 

  3. Hopewell JW. Radiation-therapy effects on bone density. Med Pediatr Oncol. 2003;41:208–11.

    Article  Google Scholar 

  4. Jegoux F, Malard O, Goyenvalle E, Aguado E, Daculsi G. Radiation effects on bone healing and reconstruction: interpretation of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology. 2010;109:173–84.

    Article  Google Scholar 

  5. Little JB. Cellular, molecular, and carcinogenic effects of radiation. Hematol Oncol Clin North Am. 1993;7:337–52.

    Google Scholar 

  6. Lerouxel E, Moreau A, Bouler JM, Giumelli B, Daculsi G, Weiss P, et al. Effects of high doses of ionising radiation on bone in rats: a new model for evaluation of bone engineering. Br J Oral Maxillofac Surg. 2009;47:602–7.

    Article  Google Scholar 

  7. Head C, Alam D, Sercarz JA, Lee JT, Rawnsley JD, Berke GS, et al. Microvascular flap reconstruction of the mandible: a comparison of bone grafts and bridging plates for restoration of mandibular continuity. Otolaryngol Head Neck Surg. 2003;129:48–54.

    Article  Google Scholar 

  8. Goh BT, Lee S, Tideman H, Stoelinga PJW. Mandibular reconstruction in adults: a review. Int J Oral Maxillofac Surg. 2008;37:597–605.

    Article  Google Scholar 

  9. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;395:81–98.

    Article  Google Scholar 

  10. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254:317–30.

    Article  Google Scholar 

  11. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959–63.

    Article  Google Scholar 

  12. Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997;6:125–34.

    Article  Google Scholar 

  13. Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic experiments in rats. Acta Orthop Scand. 1989;60:334–9.

    Article  Google Scholar 

  14. Yuan J, Cui L, Zhang WJ, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate. Biomaterials. 2007;28:1005–13.

    Article  Google Scholar 

  15. Mankani MH, Kuznetsov SA, Shannon B, Nalla RK, Ritchie RO, Qin Y, et al. Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol. 2006;168:542–50.

    Article  Google Scholar 

  16. Lerouxel E, Weiss P, Giumelli B, Moreau A, Pilet P, Guicheux J, et al. Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: an experimental study in rats. Biomaterials. 2006;27:4566–72.

    Article  Google Scholar 

  17. Malard O, Guicheux J, Bouler J-M, Gauthier O, Beauvillain de Montreuil C, Aguado E, et al. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone. 2005;36:323–30.

    Article  Google Scholar 

  18. Espitalier F, Vinatier C, Lerouxel E, Guicheux J, Pilet P, Moreau F, et al. A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone. Biomaterials. 2009;30:763–9.

    Article  Google Scholar 

  19. Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C, et al. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res. 1999;46:103–11.

    Article  Google Scholar 

  20. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  Google Scholar 

  21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  Google Scholar 

  22. Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone. 2004;35:892–8.

    Article  Google Scholar 

  23. Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs. 2006;30:115–8.

    Article  Google Scholar 

  24. Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol. 2010;298:C355–64.

    Article  Google Scholar 

  25. Skedros JG, Bloebaum RD, Bachus KN, Boyce TM, Constantz B. Influence of mineral content and composition on graylevels in backscattered electron images of bone. J Biomed Mater Res. 1993;27:57–64.

    Article  Google Scholar 

  26. Monti P, Wysocki J, van der Meeren A, Griffiths NM. The contribution of radiation-induced injury to the gastrointestinal tract in the development of multi-organ dysfunction syndrome or failure. BJR Suppl BIR. 2005;27:89–94.

    Article  Google Scholar 

  27. Dumas J. Rats d’élevage—Les animaux de laboratoire. Paris: Flammarion; 1953.

    Google Scholar 

  28. Bouler J-M, LeGeros RZ, Daculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J Biomed Mater Res. 2000;51:680–4.

    Article  Google Scholar 

  29. Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48:913–27.

    Article  Google Scholar 

  30. Miura M, Miura Y, Sonoyama W, Yamaza T, Gronthos S, Shi S. Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region. Oral Dis. 2006;12:514–22.

    Article  Google Scholar 

  31. Cuturi M-C, Josien R, Cantarovich D, Bugeon L, Anegon I, Menoret S, et al. Decreased anti-donor major histocompatibility complex class I and increased class II alloantibody response in allograft tolerance in adult rats. Eur J Immunol. 1994;24:1627–31.

    Article  Google Scholar 

  32. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    Article  Google Scholar 

  33. Cornejo A, Sahar DE, Stephenson SM, Chang S, Nguyen S, Guda T, et al. Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A. 2012;18:1552–61.

    Article  Google Scholar 

  34. Aguirre A, Planell JA, Engel E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun. 2010;400:284–91.

    Article  Google Scholar 

  35. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 2006;20:161–71.

    Article  Google Scholar 

  36. Phulpin B, Dolivet G, Marie P-Y, Poussier S, Huger S, Bravetti P, et al. Feasibility of treating irradiated bone with intramedullary delivered autologous mesenchymal stem cells. J Biomed Biotechnol. 2011;2011:1–9.

    Article  Google Scholar 

  37. Boukhechba F, Balaguer T, Bouvet-Gerbettaz S, Michiels J-F, Bouler J-M, Carle GF, et al. Fate of bone marrow stromal cells in a syngenic model of bone formation. Tissue Eng Part A. 2011;17:2267–78.

    Article  Google Scholar 

  38. Green DE, Adler BJ, Chan ME, Rubin CT. Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J Bone Miner Res. 2012;27:749–59.

    Article  Google Scholar 

  39. Evans HB, Brown S, Hurst LN. The effects of early postoperative radiation on vascularized bone grafts. Ann Plast Surg. 1991;26:505–10.

    Article  Google Scholar 

  40. Fenner M, Park J, Schulz N, Amann K, Grabenbauer GG, Fahrig A, et al. Validation of histologic changes induced by external irradiation in mandibular bone. An experimental animal model. J Cranio-Maxillofac Surg. 2010;38:47–53.

    Article  Google Scholar 

  41. Willey JS, Lloyd SAJ, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, et al. Early increase in osteoclast number in mice after whole-body irradiation with 2 gy X rays. Radiat Res. 2008;170:388–92.

    Article  Google Scholar 

  42. Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci. 2011;108:1609–14.

    Article  Google Scholar 

  43. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14:1805–15.

    Article  Google Scholar 

  44. Murphy WL, Simmons CA, Kaigler D, Mooney DJ. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res. 2004;83:204–10.

    Article  Google Scholar 

  45. Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today. 2003;8:980–9.

    Article  Google Scholar 

  46. Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004;8:498–508.

    Article  Google Scholar 

  47. Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med. 2011;17:1594–601.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from “La Ligue Contre Le Cancer” foundation, committees “Pays de La Loire” and “Côtes d’Armor”. We thank Biomatlante (Vigneux de Bretagne, France) for supplying materials. We thank Doctor Marion Eveillard for the bone marrow myelographic analysis.

Conflict of interest

The authors declare no industrial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bléry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bléry, P., Corre, P., Malard, O. et al. Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold. J Mater Sci: Mater Med 25, 2711–2720 (2014). https://doi.org/10.1007/s10856-014-5282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5282-5

Keywords

Navigation