Skip to main content
Log in

The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

This study shows the effects of the flavonoid quercetin on diverse mitochondrial functions, among them membrane permeability. Our findings indicate that the addition of 50 µM quercetin did not produce reactive oxygen derived species; however, it inhibited the oxidative stress induced after the addition of Fe2/H2O2 by about 38%. At this concentration, quercetin also promoted a fast calcium release, inhibited oxidative phosphorylation, stimulated oxygen consumption, and decreased membrane potential. In addition 50 µM quercetin inhibited the adenine nucleotide translocase (ANT) by 46%. These effects induced the opening of the permeability transition pore and release of cytochrome c, by its interaction with a component of the non-specific pore complex, fixed to the carrier in the conformation c, as carboxyatractyloside does. Quercetin-induced permeability transition pore opening was inhibited by 0.5 µM cyclosporin A, but, interestingly, the release of cytochrome c was not inhibited by the immunosuppressor, as quercetin was found to disrupt the outer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerman KEO, Wikström MFK (1976) FEBS Lett. 68:191–197

    Article  CAS  Google Scholar 

  • Belyaeva EA, Glazunov VV, Korotkov SM (2004) Acta Biochim. Pol. 51:545–551

    CAS  Google Scholar 

  • Bernardi P (1999) Physiol. Ver. 79:1127–1155

    CAS  Google Scholar 

  • Borutaite V, Budriunaite A, Morkuniene R, Brown GC (2001) Biochim. Biophys. Acta 1537:101–109

    CAS  Google Scholar 

  • Borutaite V, Jekabsone A, Morkuniene R, Brown GC (2003) J. Mol. Cell. Cardiol. 35:357–366

    Article  CAS  Google Scholar 

  • Brookes PS, Digerness SB, Parks DA, Darley-Usmar V (2002) Free Rad. Biol. Med. 32:1220–1228

    Article  CAS  Google Scholar 

  • Brustovetsky N, Klingenberg M (1996) Biochemistry 35:8483–8388

    Article  CAS  Google Scholar 

  • Cano A, Arnao MB, Williamson G, Garcia-Conesa MT (2002) Redox Rep. 7:379–383

    Article  CAS  Google Scholar 

  • Chávez E, Holguín JA (1988) J. Biol. Chem. 263:3582–3597

    Google Scholar 

  • Chávez E, Moreno-Sánchez R, Zazueta C, Reyes-Vivas H, Arteaga D (1991) Biochim. Biophys. Acta 1070:461–466

    Article  Google Scholar 

  • Chow JM, Shen SC, Huan SK, lin HY, Chen YC (2005) Biochem Pharmacol 69:1839–1851

    Article  CAS  Google Scholar 

  • Correa F, Soto V, Zazueta C (2007) Int. J. Biochem. Cell. Biol. 39:787–798

    Article  CAS  Google Scholar 

  • Davies AM, Hershman S, Staley GJ, Hoek JB, Peterson J, Cahill A (2003) Nucleic Acids Res. 31:1364–1373

    Article  CAS  Google Scholar 

  • Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Prado IM, Helena AF, Uyemura AS, Santos AC, Curti C (2005) Chem. Biol. Interact. 152:67–78

    Article  CAS  Google Scholar 

  • Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) J Biol Chem 274:2225–2233

    Article  CAS  Google Scholar 

  • Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Chem Res Toxicol. 20:1919–1926

    Article  CAS  Google Scholar 

  • García N, García JJ, Correa F, Chávez E (2005) Life Sci. 29:2873–2880

    Article  Google Scholar 

  • García N, Martínez-Abundis E, Pavón N, Chávez E (2007) Cell. Biochem. Biophys. 49:84–90

    Article  Google Scholar 

  • García N, Zazueta C, Carrillo R, Correa F, Chávez E (2000) Mol. Cell. Biochem. 209:119–123

    Article  Google Scholar 

  • García-Sáez AJ, Chintia S, Salgado J, Schwille P (2007) Biophys J 93:103–112

    Article  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Am J Physiol 258:C755–C786

    CAS  Google Scholar 

  • Halestrap AP (2004) Nature 430:1

    Article  Google Scholar 

  • Haworth RA, Hunter DRM (2000) J Bioenerg Biomembr 32:91–96

    Article  CAS  Google Scholar 

  • Hu JP, Calomme M, Lasure A, De Bruyne T, Pieters L, Vlietinck A, Vanden Berghe DA (1995) Biol. Trace Elem. Res. 47:327–331

    Article  CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) Nature 29:461–465

    Article  Google Scholar 

  • Kowaltowski AJ, Netto LES, Vercesi AE (1988) J. Biol. Chem. 273:12766–12769

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J. Biol. Chem. 193:450–457

    Google Scholar 

  • Metodiewa D, Jaswal AK, Cenas N, Dickancaité E, Segura-Aguilar J (1999) Free Rad. Biol. 26:107–116

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Anal Biochem. 95:351–358

    Article  CAS  Google Scholar 

  • Park C, So HS, Shin CH, Baek SH, Monn BS, Shin SH, Lee HS, Lee DW, Park R (2003) Biochem Pharmacol 66:1287–1295

    Article  CAS  Google Scholar 

  • Pebay-Peyroula E, Gonzalez-Dahout C, Kahn R, Trézéguet V, Lauquín GJM, Brandolín G (2003) Nature 426:39–44

    Article  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2004) J. Biol. Chem. 279:53103–53108

    Article  CAS  Google Scholar 

  • Robeszkiewicz A, Balcerczyk A, Bartosz G (2007) Cell Biol Int. 31:1245–1250

    Article  Google Scholar 

  • Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Free Radic Biol Med 19:481–486

    Article  CAS  Google Scholar 

  • Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Free Rad. Biol. Med. 24:1455–1461

    Article  CAS  Google Scholar 

  • Scarpa A, Brinley FJ, Tiffert T, Dubyak GR (1978) Ann. N. Y. Acad. Sci. 307:86–112

    Article  CAS  Google Scholar 

  • Schlesinger PH, Saito M (2006) Cell Death Differ 13:1403–1408

    Article  CAS  Google Scholar 

  • Schweizer M, Durrer P, Richter C (2004) Biochem. Pharmacol. 48:967–973

    Article  Google Scholar 

  • Sekher Pannala A, Chan TS, O’Brien PJ, Rice-Evans CA (2001) Biochem. Biophys. Res. Commun. 282:1161–1168

    Article  CAS  Google Scholar 

  • Trumbeckaite S, Bernatoniene J, Majiene D, Jakstas V, Savickas A, Toleikis A (2006) Biomed. Pharmacother. 60:245–248

    Article  CAS  Google Scholar 

  • Wätjen W, Michels G, Steffan B, Niering P, Chovolou Y, Kampkötter Tran-Thi Q, Proksch P, Kahl R (2005) J. Nutr. 135:525–531

    Google Scholar 

  • Weiss JN, Korge P, Honda HM, Ping P (2003) Circ Res 93:292–301

    Article  CAS  Google Scholar 

  • Wieckowski MR, Wojtczak L (1998) FEBS Lett. 423:339–342

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Curr. Opin. Plant. Biol. 5:218–223

    Article  CAS  Google Scholar 

  • Zazueta C, Sánchez C, García N, Correa F (2000) Int. J. Biochem. Cell Biol 32:1093–1101

    Article  CAS  Google Scholar 

  • Zoratti M, Szabó I, De Marchi U (2005) Biochim. Biophys. Acta 1706:40–52

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Biochim. Biophys. Acta 1757:509–517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, R., García, N. The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J Bioenerg Biomembr 41, 41–47 (2009). https://doi.org/10.1007/s10863-009-9198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9198-6

Keywords

Navigation