Skip to main content
Log in

Influence of aging on membrane permeability transition in brain mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mitochondrial inner membrane permeability transition (MPT) plays an important role in the pathophysiology of acute disorders of the central nervous systems, including ischemic and traumatic brain injury, and possibly in neurodegenerative diseases. Opening of the permeability transition pore (PTP) by a combination of abnormally elevated intramitochondrial Ca2+ and oxidative stress induces the collapse of transmembrane ion gradients, resulting in membrane depolarization and uncoupling of oxidative phosphorylation. This loss of ATP synthesis eventually results in cellular metabolic failure and necrotic cell death. Drugs, e.g., cyclosporin A, can inhibit the permeability transition through their interaction with the mitochondria-specific protein, cyclophilin D, and demonstrate neuroprotection in several animal models. These characteristics of the MPT were developed almost exclusively from experiments performed with young, mature rodents whereas the neuropathologies associated with the MPT are most prevalent in the elderly population. Some evidence indicates that the sensitivity of mitochondria to Ca2+-induced PTP opening is greater in the aged compared to the young mature brain; however, the basis for this difference is unknown. Based on knowledge of factors that regulate the MPT and on other comparisons between cells and mitochondria from young and old animals, several features may be important. These aging-related features include impaired neuronal Ca2+ homeostasis, increased oxidative stress, increased cyclophilin D protein levels, oxidative modification of the adenine nucleotide translocase and of cardiolipin, and changes in the levels of anti-death mitochondrial proteins, e.g., Bcl-2. The influence of aging on both the contribution of the MPT to neuropathology and the neuroprotective efficacy of MPT inhibitors is a substantial knowledge gap that requires extensive research at the subcellular, cellular, and animal model levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazil JN, Buzzard T, Rundell AE (2010) A bioenergetic model of the mitochondrial population undergoing permeability transition. Journal of Theoretical Biology In Press, Uncorrected Proof.

  • Brown MR, Geddes JW, Sullivan PG (2004) Brain region-specific, age-related, alterations in mitochondrial responses to elevated calcium. J Bioenerg Biomembr 36:401–406

    Article  CAS  Google Scholar 

  • Chen JJ, Bertrand H, Yu BP (1995) Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med 19:583–590

    Article  CAS  Google Scholar 

  • Crompton M (2004) Mitochondria and aging: a role for the permeability transition? Aging Cell 3:3–6

    Article  CAS  Google Scholar 

  • Di LF, Bernardi P (2005) Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 66:222–232

    Article  Google Scholar 

  • Eliseev RA, Filippov G, Velos J, Vanwinkle B, Goldman A, Rosier RN, Gunter TE (2006) Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol Aging1532-1542.

  • Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, Gunter TE (2009) Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem 284:9692–9699

    Article  CAS  Google Scholar 

  • Ellerby LM, Ellerby HM, Park SM, Holleran AL, Murphy AN, Fiskum G, Kane DJ, Testa MP, Kayalar C, Bredesen DE (1996) Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2. J Neurochem 67(3):1259–1267, 1259-1267

    Article  CAS  Google Scholar 

  • Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17:843–855

    Article  CAS  Google Scholar 

  • Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, Kowaltowski A (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36:347–352

    Article  CAS  Google Scholar 

  • Fiskum G, Danilov CA, Mehrabian Z, Bambrick LL, Kristian T, McKenna MC, Hopkins I, Richards EM, Rosenthal RE (2008) Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Ann NY Acad Sci 1147:129–138

    Article  CAS  Google Scholar 

  • Garcia N, Zazueta C, Martinez-Abundis E, Pavon N, Chavez E (2009) Cyclosporin A is unable to inhibit carboxyatractyloside-induced permeability transition in aged mitochondria. Comp Biochem Physiol C Toxicol Pharmacol 149:374–381

    Article  Google Scholar 

  • Giron-Calle J, Schmid HH (1996) Peroxidative modification of a membrane protein. Conformation-dependent chemical modification of adenine nucleotide translocase in Cu2+/tert- butyl hydroperoxide treated mitochondria. Biochemistry 35:15440–15446

    Article  CAS  Google Scholar 

  • Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Franconi JM, Deschodt-Arsac V, Diolez P (2010) Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator. Biochem Biophys Acta 1797:143–151

    CAS  Google Scholar 

  • Greco T, Fiskum G (2010a) Neuroprotection through stimulation of mitochondrial antioxidant protein expression. J Alzheimers Dis 20(Suppl 2):427–437

    Google Scholar 

  • Greco T, Fiskum G (2010b) Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition. J Bioenerg Biomembr 42:491–497

    Article  CAS  Google Scholar 

  • Groeger AL, Freeman BA (2010) Signaling actions of electrophiles: anti-inflammatory therapeutic candidates. Mol Interv 10:39–50

    Article  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  Google Scholar 

  • Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860

    Article  CAS  Google Scholar 

  • Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    Article  CAS  Google Scholar 

  • Hofer T, Servais S, Seo AY, Marzetti E, Hiona A, Upadhyay SJ, Wohlgemuth SE, Leeuwenburgh C (2009) Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction. Mech Ageing Dev 130:297–307

    Article  CAS  Google Scholar 

  • Jacob MH, Janner DR, Araujo AS, Jahn MP, Kucharski LC, Moraes TB, Dutra Filho CS, Ribeiro MF, Bello-Klein A (2010) Redox imbalance influence in the myocardial Akt activation in aged rats treated with DHEA. Exp Gerontol 45:957–963

    Article  CAS  Google Scholar 

  • Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE, Fiskum G (2000) Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ 7:903–910

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Fenton RG, Fiskum G (2004) Bcl-2 family proteins regulate mitochondrial reactive oxygen production and protect against oxidative stress. Free Radic Biol Med 37(11):1845–1853

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    Article  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  CAS  Google Scholar 

  • LaFrance R, Brustovetsky N, Sherburne C, Delong D, Dubinsky JM (2005) Age-related changes in regional brain mitochondria from Fischer 344 rats. Aging Cell 4:139–145

    Article  CAS  Google Scholar 

  • Leite AC, Oliveira HC, Utino FL, Garcia R, Alberici LC, Fernandes MP, Castilho RF, Vercesi AE (2010) Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochim Biophys Acta 1797:1210–1216

    Article  CAS  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta (BBA). Bioenergetics 1787:1395–1401

    CAS  Google Scholar 

  • Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ, Knoops B (2009) Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys 491:39–45

    Article  CAS  Google Scholar 

  • Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, Kroemer G (1997) Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158:4612–4619

    CAS  Google Scholar 

  • Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129:542–549

    Article  CAS  Google Scholar 

  • Mather M, Rottenberg H (2000) Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun 273:603–608

    Article  CAS  Google Scholar 

  • Mazzeo AT, Beat A, Singh A, Bullock MR (2009) The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp Neurol 218:363–370

    Article  CAS  Google Scholar 

  • Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, White CL, Purpera MN, Uranga RM, Bruce-Keller AJ, Keller JN (2010) High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 114:1581–1589

    Article  CAS  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  Google Scholar 

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    Article  CAS  Google Scholar 

  • Nicholls DG (2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 1787:1416–1424

    Article  CAS  Google Scholar 

  • Pallardo FV, Asensi M, Garcia dlA, Anton V, Lloret A, Sastre J, Vina J (1998) Late onset administration of oral antioxidants prevents age-related loss of motor co-ordination and brain mitochondrial DNA damage. Free Radic Res 29:617–623

    Article  CAS  Google Scholar 

  • Parihar MS, Kunz EA, Brewer GJ (2008) Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J Neurosci Res 86:2339–2352

    Article  CAS  Google Scholar 

  • Petrosillo G, Matera M, Casanova G, Ruggiero FM, Paradies G (2008) Mitochondrial dysfunction in rat brain with aging - involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53:126–131

    Article  CAS  Google Scholar 

  • Petrosillo G, Moro N, Paradies V, Ruggiero FM, Paradies G (2010) Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J Pineal Res 48:340–346

    Article  CAS  Google Scholar 

  • Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C (2002) The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 959:93–107

    Article  CAS  Google Scholar 

  • Rasola A, Sciacovelli M, Pantic B, Bernardi P (2010) Signal transduction to the permeability transition pore. FEBS Lett 584:1989–1996

    Article  CAS  Google Scholar 

  • Robertson CL, Scafidi S, McKenna MC, Fiskum G (2009) Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Exp Neurol 218:371–380

    Article  CAS  Google Scholar 

  • Sawada M, Carlson JC (1987) Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev 41:125–137

    Article  CAS  Google Scholar 

  • Sen T, Sen N, Jana S, Khan FH, Chatterjee U, Chakrabarti S (2007) Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity. Neurochem Int 50:719–725

    Article  CAS  Google Scholar 

  • Soane L, Kahraman S, Kristian T, Fiskum G (2007) Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 85:3407–3415

    Article  CAS  Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    Article  CAS  Google Scholar 

  • Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79:231–239

    Article  CAS  Google Scholar 

  • Toescu EC, Vreugdenhil M (2010) Calcium and normal brain ageing. Cell Calcium 47:158–164

    Article  CAS  Google Scholar 

  • Toescu EC, Verkhratsky A, Landfield PW (2004) Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27:614–620

    Article  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    Article  CAS  Google Scholar 

  • Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:1–13

    Google Scholar 

  • Xiong J, Verkhratsky A, Toescu EC (2002) Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices. J Neurosci 22:10761–10771

    CAS  Google Scholar 

  • Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95:12896–12901

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83:213–225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Fiskum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toman, J., Fiskum, G. Influence of aging on membrane permeability transition in brain mitochondria. J Bioenerg Biomembr 43, 3–10 (2011). https://doi.org/10.1007/s10863-011-9337-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9337-8

Keywords

Navigation