Skip to main content

Advertisement

Log in

Lipid peroxidation in brain or spinal cord mitochondria after injury

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Extensive evidence has demonstrated an important role of oxygen radical formation (i.e., oxidative stress) as a mediator of the secondary injury process that occurs following primary mechanical injury to the brain or spinal cord. The predominant form of oxygen radical-induced oxidative damage that occurs in injured nervous tissue is lipid peroxidation (LP). Much of the oxidative stress in injured nerve cells initially begins in mitochondria via the generation of the reactive nitrogen species peroxynitrite (PN) which then can generate multiple highly reactive free radicals including nitrogen dioxide (•NO2), hydroxyl radical (•OH) and carbonate radical (•CO3). Each can readily induce LP within the phospholipid membranes of the mitochondrion leading to respiratory dysfunction, calcium buffering impairment, mitochondrial permeability transition and cell death. Validation of the role of LP in central nervous system secondary injury has been provided by the mitochondrial and neuroprotective effects of multiple antioxidant agents which are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765(2):283–290

    Article  CAS  Google Scholar 

  • Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822(5):675–684. doi:10.1016/j.bbadis.2011.10.017

    Article  CAS  Google Scholar 

  • Bao F, Liu D (2002) Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 115(3):839–849

    Article  CAS  Google Scholar 

  • Bao F, Liu D (2003) Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 116(1):59–70

    Article  CAS  Google Scholar 

  • Bringold U, Ghafourifar P, Richter C (2000) Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med 29(3–4):343–348

    Article  CAS  Google Scholar 

  • Deng Y, Thompson BM, Gao X, Hall ED (2007) Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp Neurol 205(1):154–165

    Article  CAS  Google Scholar 

  • Galvani S, Coatrieux C, Elbaz M, Grazide MH, Thiers JC, Parini A et al (2008) Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radic Biol Med 45(10):1457–1467. doi:10.1016/j.freeradbiomed.2008.08.026

    Article  CAS  Google Scholar 

  • Hall ED (2011a) Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 8(2):152–167. doi:10.1007/s13311-011-0026-4

    Article  CAS  Google Scholar 

  • Hall ED (2011b) Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 8(2):152–167. doi:10.1007/s13311-011-0026-4

    Article  CAS  Google Scholar 

  • Hall ED, Braughler JM, Yonkers PA, Smith SL, Linseman KL, Means ED et al (1991) U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther 258(2):688–694

    CAS  Google Scholar 

  • Hall ED, Andrus PK, Smith SL, Fleck TJ, Scherch HM, Lutzke BS et al (1997) Pyrrolopyrimidines: novel brain-penetrating antioxidants with neuroprotective activity in brain injury and ischemia models. J Pharmacol Exp Ther 281(2):895–904

    CAS  Google Scholar 

  • Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7(1):51–61. doi:10.1016/j.nurt.2009.10.021

    Article  CAS  Google Scholar 

  • Hamann K, Shi R (2009) Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 111(6):1348–1356. doi:10.1111/j.1471-4159.2009.06395.x

    Article  CAS  Google Scholar 

  • Hamann K, Durkes A, Ouyang H, Uchida K, Pond A, Shi R (2008a) Critical role of acrolein in secondary injury following ex vivo spinal cord trauma. J Neurochem 107(3):712–721. doi:10.1111/j.1471-4159.2008.05622.x

    Article  CAS  Google Scholar 

  • Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R (2008b) Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem 104(3):708–718. doi:10.1111/j.1471-4159.2007.05002.x

    CAS  Google Scholar 

  • Hatton J, Rosbolt B, Empey P, Kryscio R, Young B (2008) Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 109(4):699–707. doi:10.3171/JNS/2008/109/10/0699

    Article  CAS  Google Scholar 

  • Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P et al (2003) Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab 23(2):219–231

    Article  CAS  Google Scholar 

  • Lopez-Figueroa MO, Caamano C, Morano MI, Ronn LC, Akil H, Watson SJ (2000) Direct evidence of nitric oxide presence within mitochondria. Biochem Biophys Res Commun 272(1):129–133

    Article  CAS  Google Scholar 

  • Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F et al (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89(4):519–525

    Article  CAS  Google Scholar 

  • Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED (2008) Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol 209(1):243–253

    Article  CAS  Google Scholar 

  • Mbye LH, Singh IN, Carrico KM, Saatman KE, Hall ED (2009) Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab 29(1):87–97. doi:10.1038/jcbfm.2008.93

    Article  CAS  Google Scholar 

  • Muizelaar JP, Kupiec JW, Rapp LA (1995) PEG-SOD after head injury. J Neurosurg 83(5):942

    CAS  Google Scholar 

  • Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114(1):271–280. doi:10.1111/j.1471-4159.2010.06749.x

    CAS  Google Scholar 

  • Mustafa AG, Wang JA, Carrico KM, Hall ED (2011) Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 117(3):579–588. doi:10.1111/j.1471-4159.2011.07228.x

    Article  CAS  Google Scholar 

  • Okonkwo DO, Povlishock JT (1999) An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 19(4):443–451

    Article  CAS  Google Scholar 

  • Okonkwo DO, Buki A, Siman R, Povlishock JT (1999) Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 10(2):353–358

    Article  CAS  Google Scholar 

  • Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418

    Article  CAS  Google Scholar 

  • Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED (2013) Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 33(4):593–599. doi:10.1038/jcbfm.2012.211

    Article  CAS  Google Scholar 

  • Sullivan PG, Keller JN, Mattson MP, Scheff SW (1998) Traumatic brain injury alters synaptic homeostasis: implications for impaired mitochondrial and transport function. J Neurotrauma 15(10):789–798

    Article  CAS  Google Scholar 

  • Sullivan PG, Thompson MB, Scheff SW (1999) Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160(1):226–234. doi:10.1006/exnr.1999.7197

    Article  CAS  Google Scholar 

  • Sullivan PG, Thompson M, Scheff SW (2000) Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp Neurol 161(2):631–637

    Article  CAS  Google Scholar 

  • Sullivan PG, Keller JN, Bussen WL, Scheff SW (2002) Cytochrome c release and caspase activation after traumatic brain injury. Brain Res 949(1–2):88–96

    Article  CAS  Google Scholar 

  • Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79(1–2):231–239

    Article  CAS  Google Scholar 

  • Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24(6):991–999

    Article  Google Scholar 

  • Sullivan PG, Sebastian AH, Hall ED (2011) Therapeutic window analysis of the neuroprotective effects of cyclosporine A after traumatic brain injury. J Neurotrauma 28(2):311–318. doi:10.1089/neu.2010.1646

    Article  Google Scholar 

  • Vaishnav RA, Singh IN, Miller DM, Hall ED (2010) Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function. J Neurotrauma 27(7):1311–1320. doi:10.1089/neu.2009.1172

    Article  Google Scholar 

  • Valdez LB, Alvarez S, Arnaiz SL, Schopfer F, Carreras MC, Poderoso JJ et al (2000) Reactions of peroxynitrite in the mitochondrial matrix. Free Radic Biol Med 29(3–4):349–356

    Article  CAS  Google Scholar 

  • Xiong Y, Hall ED (2009) Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Exp Neurol 216:105–114

    Article  CAS  Google Scholar 

  • Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997a) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14(1):23–34

    Article  CAS  Google Scholar 

  • Xiong Y, Peterson PL, Muizelaar JP, Lee CP (1997b) Amelioration of mitochondrial function by a novel antioxidant U-101033E following traumatic brain injury in rats. J Neurotrauma 14(12):907–917

    Article  CAS  Google Scholar 

  • Xiong Y, Peterson PL, Verweij BH, Vinas FC, Muizelaar JP, Lee CP (1998) Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 15(7):531–544

    Article  CAS  Google Scholar 

  • Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 100(3):639–649

    Article  CAS  Google Scholar 

  • Xiong Y, Singh IN, Hall ED (2009) Tempol protection of spinal cord mitochondria from peroxynitrite-induced oxidative damage. Free Radic Res 43(6):604–612. doi:10.1080/10715760902977432

    Article  CAS  Google Scholar 

  • Zanella B, Calonghi N, Pagnotta E, Masotti L, Guarnieri C (2002) Mitochondrial nitric oxide localization in H9c2 cells revealed by confocal microscopy. Biochem Biophys Res Commun 290(3):1010–1014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in the authors’ laboratory was partially funded by grants from the National Institute of Neurological Disorders & Stroke (NINDS) including R01 NS046566, R01 NS083405, R01 NS084857, P01 NS058484, R21 NS077434 and P30 NS051220 and grants from the Kentucky Spinal Cord & Head Injury Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, E.D., Wang, J.A., Bosken, J.M. et al. Lipid peroxidation in brain or spinal cord mitochondria after injury. J Bioenerg Biomembr 48, 169–174 (2016). https://doi.org/10.1007/s10863-015-9600-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9600-5

Keywords

Navigation