Skip to main content
Log in

Orientation of Red Blood Cells and Rouleaux Disaggregation in Interference Laser Fields

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The effect of interference laser fields on red blood cells (RBCs) was investigated both theoretically and experimentally. The optical trapping and orientation of individual RBC in interference fringes were observed. It was found that RBC rouleaux undergo disaggregation under the action of interference laser fields. To describe the effect of RBC orientation in interference fringes, we used the equation for torque exerted on a discoid dielectric particle in a gradient light field. The experimental results are in agreement with the predictions of the developed theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkin, A. and Dziedzic, J.M.: Optical Trapping and Manipulation of Viruses and Bacteria, Science 235 (1987), 1517–1520.

    CAS  PubMed  Google Scholar 

  2. Ashkin, A., Dziedzic, J.M. and Yamane, T.: Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams, Nature 330 (1987), 769–771.

    Article  CAS  PubMed  Google Scholar 

  3. Rohrbach, A. and Stelzer, E.H.K.: Optical Trapping of Dielectric Particles in Arbitrary Fields, J. Opt. Soc. Am. A 18 (2001), 839–853.

    CAS  Google Scholar 

  4. Svoboda, K. and Block, S.M.: Biological Applications of Optical Forces, Annu. Rev. Biophys. Biomol. Struct. 23 (1994), 247–285.

    CAS  PubMed  Google Scholar 

  5. Grover, S.C., Skirtach, A.G., Gauthier, R.C. and Grover, C.P.: Automated Single-Cell Sorting System Based on Optical Trapping, J. Biomed. Opt. 6 (2001), 14–22.

    Article  CAS  PubMed  Google Scholar 

  6. Visscher, K., Brakenhoff, G.J. and Krol, J.J.: Micromanipulation by “Multiple” Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Microscope, Cytometry 14 (1993), 105–114.

    CAS  PubMed  Google Scholar 

  7. Tatarkova, S.A., Carruthers, A.E. and Dholakia, K.: One-Dimensional Optically Bound Arrays of Microscopic Paricles, Phys. Rev. Lett. 89 (2002), 283901-1–283901-4.

    Article  Google Scholar 

  8. Curtis, J.E., Koss, B.A. and Grier, D.G.: Dynamic Holographic Optical Tweezers, Opt. Commun. 207 (2002), 169–175.

    Article  CAS  Google Scholar 

  9. Eriksen, R.L., Mogensen, P.C. and Glückstad, J.: Multiple-Beam Optical Tweezers Generated by the Generalized Phase-Contrast Method, Opt. Lett. 27 (2002), 267–269.

    Google Scholar 

  10. Flynn, R.A., Birkbeck, A.L., Gross, M., Ozkan, M., Shao, B., Wang, M.M. and Esener, S.C.: Parallel Transport of Biological Cells Using Individually Addressable VCSEL Arrays as Optical Tweezers, Sens. Actuat. B 87 (2002), 239–243.

    Article  Google Scholar 

  11. Burns, M.M., Golovchenko, J.A. and Fournier, J.-M.R.: Optical Matter: Crystallizaton and Binding in Intense Optical Fields, Science 249 (1990), 713–828.

    Google Scholar 

  12. Fournier, J.-M.R., Burns, M.M. and Golovchenko, J.A.: Writing Diffractive Structure by Optical Trapping, Proc. SPIE 2406 (1995), 101–111.

    Google Scholar 

  13. Chiou, A.E., Wang, W., Sonek, G.J., Hong, J. and Berns, M.W.: Interferometric Optical Tweezers, Opt. Commun. 133 (1997), 7–10.

    Article  CAS  Google Scholar 

  14. Rubinov, A.N., Katarkevich, V.M., Afanas’ev, A.A. and Efendiev, T. Sh.: Interaction of Interference Laser Field with an Ensemble of Particles in Liquid, Opt. Commun. 224 (2003), 97–106.

    Article  CAS  Google Scholar 

  15. MacDonald, M.P., Paterson, L., Sibbett, W., Dholakia, K. and Bryant, P.E.: Trapping and Manipulation of Low-Index Particles in a Two-Dimentional Interferometric Optical Trap, Opt. Lett. 26 (2001), 863–865.

    CAS  Google Scholar 

  16. MacDonald, M.P., Paterson, L., Volke-Sepulveda, K., Arlt, J., Sibbett, W. and Dholakia, K.: Creation and Manipulation of Three-Dimensional Optically Trapped Structures, Science 296 (2002), 1101–1103.

    Article  CAS  PubMed  Google Scholar 

  17. Rubinov, A.N.: Physical Grounds for Biological Effect of Laser Radiation, J. Phys. D: Appl. Phys. 36 (2003), 2317–2330.

    Article  CAS  Google Scholar 

  18. Rubinov, A.N. and Afanas’ev, A.A.: Application of Gradient Laser Fields in Biology and Medicine (Physical Principles and Prospects), Proc. SPIE 4749 (2002), 207–220.

    Article  Google Scholar 

  19. Bronkhorst, P.J.H., Grimbergen, J., Brakenhoff, G.J., Heethaar, R.M. and Sixma, J.J.: The Mechanism of Red Cell (Dis)Aggregation Investigated by Means of Direct Cell Manipulation Using Multiple Optical Trapping, Br. J. Haematol. 96 (1997), 256–258.

    Article  CAS  PubMed  Google Scholar 

  20. Ivanov, A.P., Makarevich, S.A. and Khairullina, A.Y.: Radiation Propagation in Tissues and Liquids with Close Particle Packing, J. Appl. Spectr. 47 (1987), 1077–1082.

    Article  Google Scholar 

  21. Chien, S.: Biophysical Behavior of Red Cells in Suspensions, in D. MacN. Surgenor (ed.) The Red Blood Cell, Second Edition, Vol. II, Academic Press, NY, 1975, pp. 1031–1133.

    Google Scholar 

  22. Kranz, A.: Red Cell-Mediated Therapy: Opportunities and Challenges, Blood Cells Mol. Dis. 23 (1997), 58–69.

    Article  PubMed  Google Scholar 

  23. Krantz, A., Song, Y., DeNagel, D., Hartmann, C. and Bridon, D.: Drug Pharmacophores Covalently Linked to the Red Cell Surface are Active Without Prior Release. Drug Targeting of Renin with a Synthetic Ligand Conjugated to Red Blood Cells, J. Drug Target. 7 (1999), 113–130.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Kruchenok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruchenok, J.V., Bushuk, S.B., Kurilo, G.I. et al. Orientation of Red Blood Cells and Rouleaux Disaggregation in Interference Laser Fields. J Biol Phys 31, 73–85 (2005). https://doi.org/10.1007/s10867-005-6732-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-6732-6

Key words

Navigation