Skip to main content
Log in

New perspectives in brain information processing

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Brain cortex activity, as variously recorded by scalp or cortical electrodes in the electroencephalography (EEG) frequency range, probably reflects the basic strategy of brain information processing. Various hypotheses have been advanced to interpret this phenomenon, the most popular of which is that suitable combinations of excitatory and inhibitory neurons behave as assemblies of oscillators susceptible to synchronization and desynchronization. Implicit in this view is the assumption that EEG potentials are epiphenomena of action potentials, which is consistent with the argument that voltage variations in dendritic membranes reproduce the postsynaptic effects of targeting neurons. However, this classic argument does not really fit the discovery that firing synchronization over extended brain areas often appears to be established in about 1 ms, which is a small fraction of any EEG frequency component period. This is in contrast with the fact that all computational models of dynamic systems formed by more or less weakly interacting oscillators of near frequencies take more than one period to reach synchronization. The discovery that the somatodendritic membranes of specialized populations of neurons exhibit intrinsic subthreshold oscillations (ISOs) in the EEG frequency range, together with experimental evidence that short inhibitory stimuli are capable of resetting ISO phases, radically changes the scheme described above and paves the way to a novel view. This paper aims to elucidate the nature of ISO generation mechanisms, to explain the reasons for their reliability in starting and stopping synchronized firing, and to indicate their potential in brain information processing. The need for a repertoire of extraneuronal regulation mechanisms, putatively mediated by astrocytes, is also inferred. Lastly, the importance of ISOs for the brain as a parallel recursive machine is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001). doi:10.1038/35067550

    Article  Google Scholar 

  2. König, P., Engel, A.K., Singer, W.: Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc. Natl. Acad. Sci. U. S. A. 92, 290–294 (1995). doi:10.1073/pnas.92.1.290

    Article  ADS  Google Scholar 

  3. Singer, W.: Neural synchrony: a versatile code for the definitions of relations? Neuron 24, 49–65 (1999). doi:10.1016/S0896-6273(00)80821-1

    Article  Google Scholar 

  4. Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001). doi:10.1038/35094565

    Article  Google Scholar 

  5. Desmaisons, D., Vincent, J.-D., Lledo, P.-M.: Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J. Neurosci. 19, 10727–10737 (1999)

    Google Scholar 

  6. Freeman, W., Schneider, W.: Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19, 44–56 (1982). doi:10.1111/j.1469-8986.1982.tb02598.x

    Article  Google Scholar 

  7. Barrie, M.J., Freeman, W.J., Lenhart, M.D.: Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J. Neurophysiol. 76, 520–539 (1996)

    Google Scholar 

  8. Key, M.L., Freeman, W.: Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav. Neurosci. 112, 541–553 (1998). doi:10.1037/0735-7044.112.3.541

    Article  Google Scholar 

  9. Freeman, W.: Mesoscopic neurodynamics: from neuron to brain. J. Physiol. 94, 303–322 (2000)

    Google Scholar 

  10. Llinás, R.R., Grace, A.A., Yarom, J.: In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc. Natl. Acad. Sci. U. S. A. 88, 879–901 (1991). doi:10.1073/pnas.88.3.897

    Article  Google Scholar 

  11. Gutfreund, Y., Yarom, Y., Segev, I.: Subthreshold oscillations and resonant frequency in guinea-pig cortical neuron: physiology and modeling. J. Physiol. 483, 621–640 (1995)

    Google Scholar 

  12. Richardson, M.J.E., Brunel, N., Hakim, V.: From subthreshold to firing-rate resonance. J. Neurophysiol. 89, 2538–2554 (2003). doi:10.1152/jn.00955.2002

    Article  Google Scholar 

  13. White, J.A., Budde, T., Kay, A.R.: A bifurcation analysis of neuronal subthreshold oscillations. Biophys. J. 69, 1203–1217 (1995). doi:10.1016/S0006-3495(95)79995-7

    Article  ADS  Google Scholar 

  14. Fransén, E., Alonso, A.A., Dickson, C.T., Magistretti, J., Hasselmo, M.E.: Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14, 368–384 (2004). doi:10.1002/hipo.10198

    Article  Google Scholar 

  15. Rotstein, H.G., Oppermann, T., White, J.A., Koppell, N.: The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J. Comput. Neurosci. 21, 271–292 (2006). doi:10.1007/s10827-006-8096-8

    Article  MathSciNet  Google Scholar 

  16. Mauro, A., Conti, F., Dodge, F., Schor, R.: Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Physiol. 55, 497–523 (1970). doi:10.1085/jgp.55.4.497

    Article  Google Scholar 

  17. DeFelice, L.J.: Introduction to Membrane Noise. Plenum, New York (1981)

    Google Scholar 

  18. Mittman, T., Linton, S.M., Schwindt, P., Crill, W.: Evidence for persistent Na +  current in apical dendrites of rat neocortical neurons from imaging of Na + -sensitive dye. Proc. Natl. Acad. Sci. U. S. A. 94, 724–728 (1997). doi:10.1073/pnas.94.2.724

    Article  Google Scholar 

  19. Magistretti, J., Ragsdale, D.S., Alonso, A.: Direct demonstration of persistent Na +  channel activity in dendritic processes of mammalian cortical neurons. J. Physiol. 521, 629–636 (1999). doi:10.1111/j.1469-7793.1999.00629.x

    Article  Google Scholar 

  20. Selyanko, A.A., Brown, D.A.: M-channel gating and simulation. Biophys. J. 77, 701–713 (1999). doi:10.1016/S0006-3495(99)76925-0

    Article  Google Scholar 

  21. Cooper, E.C., Harrington, E., Jan, Y.N., Jan, L.Y.: M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J. Neurosci. 21, 9529–9540 (2001)

    Google Scholar 

  22. Freeman, W.: How Brains Make Up Their Minds. Weidenfeld & Nicolson, London (1999)

    Google Scholar 

  23. Nobili, R., Vetešník, A., Turicchia, L., Mammano, F.: Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model. J. Assoc. Res. Otolaryngol. 4, 478–494 (2003). doi:10.1007/s10162-002-3055-1

    Article  Google Scholar 

  24. Vetešník, A., Nobili, R.: The approximate scaling law of the cochlea box model. Hear. Res. 222, 43–53 (2006). doi:10.1016/j.heares.2006.08.012

    Article  Google Scholar 

  25. Carmignoto, G., Fellin, T.: Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus. J. Physiol. 99, 98–102 (2006)

    Google Scholar 

  26. Turing, A.M.: (1936) On computable numbers, with an application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society (Ser. 2, 42)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Nobili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobili, R. New perspectives in brain information processing. J Biol Phys 35, 347–360 (2009). https://doi.org/10.1007/s10867-009-9163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9163-y

Keywords

Navigation