Skip to main content
Log in

Peak Multiphoton Excitation of mCherry Using an Optical Parametric Oscillator (OPO)

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

mCherry is a red fluorescent protein which is bright, photostable, and has a low molecular weight. It is an attractive choice for multiphoton fluorescence imaging; however, the multiphoton excitation spectrum of mCherry is not known. In this paper we report the two photon excitation spectrum of mCherry measured up to 1190 nm in the near infrared (NIR) region. Skin tissues of transgenic mice that express mCherry were used in the experiments. mCherry in the tissues was excited with a Titanium:Sapphire laser and an optical parametric oscillator pumped by the Titanium:Sapphire laser. We found that the peak excitation of mCherry occurs at 1160 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of Aeqorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59:223–229

    Article  CAS  PubMed  Google Scholar 

  2. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  3. Fraser ST, Hadjantonakis AK, Sahr KE, Willey S, Kelly OG, Jones EA, Dickinson ME, Baron MH (2005) Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis 42:162–171

    Article  CAS  PubMed  Google Scholar 

  4. Rizzo MA, Springer HG, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  5. Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450

    Article  CAS  PubMed  Google Scholar 

  6. Shaner NC, Campell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  7. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nature Methods 4:741–746

    Article  CAS  PubMed  Google Scholar 

  8. Shaner NC, Steinbach PA, Tsien RY (2005) Nature Methods 12:905–909

    Article  Google Scholar 

  9. Larina V, Shen W, Kelly OG, Hadjantonakis AK, Baron MH, Dickinson ME (2009) A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec 292:333–341

    Article  Google Scholar 

  10. Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner- Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115

    Article  CAS  PubMed  Google Scholar 

  11. Denk W, Svoboda K (1997) Photon upmanship: Why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Article  CAS  PubMed  Google Scholar 

  12. Dickinson ME, Simbuerger E, Zimmermann B, Waters CW, Fraser SE (2003) Multiphoton excitation spectra in biological samples. J. Biomed. Opt. 8:329–338

    Article  PubMed  Google Scholar 

  13. Russ JC (2002) The image processing handbook 4th ed. CRC Press, Boca Raton, FL

    Google Scholar 

  14. Girkin JM, Poland S, Wright AJ (2009) Adaptive optics for deeper imaging of biological samples. Curr. Op. Biotech. 20:106–110

    Article  CAS  Google Scholar 

  15. Oheim M, Michael MDJ, Geisbauer M, Madsen D, Chow RH (2006) Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Advanced Drug Delivery Reviews 58:788–808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the RO1 grant (R01 HL 077187), Quantum grant (NIH-NIBIB P20 EB007076), NIH training grant (T32 HL007676), and a training fellowship from the Nanobiology Training Program of the Keck Center of the Gulf Coast Consortia (R90DK071504). The authors would like to thank Marco Arrigoni (Coherent Inc., California, USA) for sharing the OPO and Darren Chomiak (Coherent Inc., California, USA) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tegy J. Vadakkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadakkan, T., Culver, J., Gao, L. et al. Peak Multiphoton Excitation of mCherry Using an Optical Parametric Oscillator (OPO). J Fluoresc 19, 1103–1109 (2009). https://doi.org/10.1007/s10895-009-0510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0510-y

Keywords

Navigation