Skip to main content
Log in

Optical Properties of Methyl Orange-Doped Droplet and Photodynamic Therapy of Staphylococcus aureus

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Dye-doped droplets are known as mixtures of dyes with uniform solutions of water droplets in a continuous phase of oils with surfactants. To observe the relationship between water droplet structures and surfactant types on optical properties of dyes, a mixture of methyl orange (MO)-doped droplet prepared with benzane and hexane as oils and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as a surfactant was thus examined using Z-scan instrument, spectrophotometer, and fluorimeter in the present study. The findings revealed that nonlinear refractive (NLR) index, nonlinear absorption (NLA) coefficient, as well as fluorescence intensity of the MO had enhanced following a reduction in the droplet water content induced by changes in the non-centrosymmetric charge density distribution of this pH indicator. Moreover, the MO-doped droplet in a continuous phase of benzene investigated by 1H nuclear magnetic resonance (NMR) spectroscopy indicated that the MO had been located in the droplet in the vicinity of the hydrophilic part of the surfactant. Furthermore, the MO-doped droplets along with laser radiation were employed to perform antibacterial photodynamic therapy (APDT) of Staphylococcus aureus (S. aureus). It was ultimately concluded that the bacteria colony had also extremely diminished in the group treated by the MO-doped droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kachynski AV, Pliss A, Kuzmin AN, Ohulchanskyy TY, Baev A, Qu J, Prasad PN (2014) Photodynamic therapy by in situ nonlinear photon conversion. Nat Photonics 8:455–461

    CAS  Google Scholar 

  2. Zhou X, Chen Y, Su J, Tian X, Luo Y, Luo L (2017) In situsecond-harmonic generation mediatedphotodynamic therapy by micelles co-encapsulating coordination nanoparticle and photosensitizer. RSC Adv 7:52125–52132

    CAS  Google Scholar 

  3. Chandra Ray P (2010) Size and shape dependent second order nonlinear optical properties of Nanomaterials and its application in biological and chemical sensing. Chem Rev 110(9):5332–5365

    Google Scholar 

  4. Turton David A, Martin David F, Wynne K (2010) Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid–liquid transition or super-Arrhenius relaxation. Phys Chem Chem Phys 12:4191–4200

    CAS  PubMed  Google Scholar 

  5. Vogt H (1974) Study of structural phase transitions by techniques of nonlinear optics. Applied Physics A 5(2):85–96

    CAS  Google Scholar 

  6. Azarpour A, Sharifi S, Rakhshanizadeh F (2018) Nonlinear optical properties of Crocin: from bulk solvent to nano-confined droplet. J Mol Liq 252:279–288

    CAS  Google Scholar 

  7. Hoseini M, Sazgarnia A, Sharifi S (2019) Cell culture medium and nano-confined water on nonlinear optical properties of Congo red. Opt Quant Electron 51:144–121. https://doi.org/10.1007/s11082-019-1865-1

    Article  CAS  Google Scholar 

  8. Al-Ahmad AY, Shabeeb Gh M, Abdullah AQ, Ziadan KM (2011) Z-scan measurement for the nonlinear absorption and the nonlinear refraction of poly1,4-diazophenylene-bridged-tris(8-hydroxy-quinoline) aluminum (PDPAlq3). Optik 122(21):1885–1889

    CAS  Google Scholar 

  9. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Stryland EV (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26(4):760–769

    CAS  Google Scholar 

  10. Choubey RK, Medhekar S, Kumar R, Mukherjee S, Kumar S (2014) Study of nonlinear optical properties of organic dye by Z-scan technique using He–Ne laser. J Mater Sci: Mater Electron 25(3):1410–1415

    CAS  Google Scholar 

  11. Mousavi Z, Ghafary B, MajlesAra MH (2019) Fifth- and third- order nonlinear optical responses of olive oil blended with natural turmeric dye using z-scan technique. J Mol Liq 285:444–450

    CAS  Google Scholar 

  12. Tingchao H, Changshun W (2008) Study on the nonlinear optical properties of three azo dyes by Z-scan measurements. J Mod Opt 55(18):3013–3020

    Google Scholar 

  13. Sangsefedi AS, Sharifi S, Rezaion HRM, Azarpour A (2018) Fluorescence and nonlinear optical properties of alizarin red S in solvents and droplet. J Fluoresc 28(3):815–825

    CAS  PubMed  Google Scholar 

  14. Singh SP, Rathinam K, Kasher R, Arnusch Ch J (2018) Hexavalent chromium ion and methyl orange dye uptake via a silk protein sericin–chitosan conjugate. RSC Adv 8:27027–27036

    CAS  Google Scholar 

  15. Dutta R, Bhat SN (1993) Interaction of methyl Orange with Submicellar cationic surfactants. Bull Chem Soc Jpn 66(9):2457–2460

    CAS  Google Scholar 

  16. Del Nero J, de Araujo RE, Gomes AS, de Melo CP (2005) Theoretical and experimental investigation of the second hyperpolarizabilities of methyl orange. J Chem Phys 122(10):104506

    PubMed  Google Scholar 

  17. Yi Z, Zhi-Hua P, Fu-Li Z, Mu Q, Yan Z, Chang-Shun W (2014) Nonlinear optical properties of an azobenzene polymer. Chin Phys B 23(2):024212

    Google Scholar 

  18. Sharifi S, Jensen GV, Pedersen JS, Marti O, Amirkhani M (2013) The mixture of poly(propylene-glycol)-block-poly(ethylene-glycol)-block-PPG with C12E5 microemulsion. Phys Chem Lliq 51(4):469–479

    CAS  Google Scholar 

  19. Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG (2018) Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain Chem Pharm 10:9–15

    Google Scholar 

  20. Miri A, Darroudi M, Entezari R, Sarani M (2018) Biosynthesis of gold nanoparticles using Prosopis farcta extract and its in vitro toxicity on colon cancer cells. Res Chem Intermed 44(5):3169–3177

    CAS  Google Scholar 

  21. Daraei A, Daraei ME (2017) Thin cylindrical slot in an optical microdisk cavity for sensing biomaterials. Applied Physics A 123:216

    Google Scholar 

  22. Rajesh S, Koshi E, Koshi P, Mohan A (2011) Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol 15(4):323–327

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohammadi Z, Sazgarnia A, Rajabi O, Toosi MS (2017) Comparative study of X-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line. Artif Cells Nanomed Biotechnol 45(3):467–473

    CAS  PubMed  Google Scholar 

  24. Ishi-i T, Taguri Y, Kato S, Shigeiwa M, Gorohmaru H, Maedad S, Matakab S (2007) Singlet oxygen generation by two-photon excitation of porphyrin derivatives having two-photon-absorbing benzothiadiazole chromophores. J Mater Chem 17:3341–3346

    CAS  Google Scholar 

  25. Arnbjerg J, Johnsen M, Frederiksen PK, Braslavsky SE, Ogilby PR (2006) Two-photon photosensitized production of singlet oxygen: optical and Optoacoustic characterization of absolute two-photon absorption cross sections for standard sensitizers in different solvents. J Phys Chem A 110(23):7375–7385

    CAS  PubMed  Google Scholar 

  26. Zhang Y, Ha Z, Zou Q, Xing R, Jiao T, Yan X (2018) An injectable dipeptide-fullerene Supramolecular hydrogel for photodynamic antibacterial therapy. J Mater Chem B 6:7335–7342

    CAS  Google Scholar 

  27. Stott K, Stonehouse J, Keeler J, Hwang TL, Shaka AJ (1995) Excitation sculpting in high-resolution nuclear magnetic resonance spectroscopy: application to selective NOE experiments. J Am Chem Soc 117:4199–4200

    CAS  Google Scholar 

  28. Dalvit C, Bovermann G (1995) Pulsed field gradient one-dimensional NMR selective ROE and TOCSY experiments. Magn Reson Chem 33:156–159

    CAS  Google Scholar 

  29. Castañar L, Nolis P, Virgili A, Parella T (2014) Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals. J Magn Reson 244:30–35

    PubMed  Google Scholar 

  30. McKenna JM, Pakinson JA (2015) HOBS methods for enhancing resolution and sensitivity in small DNA oligonucleotide NMR studies. Magn Reson Chem 53(4):249–255

    CAS  PubMed  Google Scholar 

  31. Majles Ara MH, Mousavi SH, Koushki E, Salmani S, Gharibi A, Ghanadzadeh A (2008) Nonlinear optical responses of Sudan IV doped liquid crystal by z-scan and moiré deflectometry techniques. J Mol Liq 142:29–31

    CAS  Google Scholar 

  32. Jafari A, Naderali R, Motiei H (2017) The effect of doping acid on the third-order nonlinearity of carboxymethyl cellulose by the Z-scan technique. Opt Mater 64:345–350

    CAS  Google Scholar 

  33. Dalir N, Javadian S, Dehghani Z (2017) High optical nonlinearity of nematic liquid crystal doped with graphen oxide. J Mol Liq 244:103–109

    CAS  Google Scholar 

  34. Sendhil K, Vijayan C, Kothiyal MP (2006) Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin. Opt Laser Technol 38:512–515

    CAS  Google Scholar 

  35. Han P, Wang D, Gao H, Zhang J, Xing Y, Yang Z, Cao H, He W (2018) Third-order nonlinear optical properties of cyanine dyes with click chemistry modification. Dyes Pigments 149:8–15

    CAS  Google Scholar 

  36. He T, Cheng Y, Du Y, Mo Y (2007) Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films. Opt Commun 275:240–244

    CAS  Google Scholar 

  37. Kityk IV, Guignard M, Nazabal V, Zhang XH, Troles J, Smektala F, Sahraoui B, Boudebs G (2007) Manifestation of electron–phonon interactions in IR-induced second harmonic generation in a sulphide glass-ceramic with b-GeS2 microcrystallites. Physica B 391:222–227

    CAS  Google Scholar 

  38. Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z, Cheng X (2019) Electron–phonon coupling in topological insulator Bi2Se3 thin films with different substrates. Chin Opt Lett 17(2):020005

    Google Scholar 

  39. Wei K, Jiang T, Xu Z, Zhou J, You J, Tang Y, Li H, Chen R, Zheng X, Wang S, Yin K, Wang Z, Wang J, Cheng X (2018) Ultrafast carrier transfer promoted by interlayer coulomb coupling in 2D/3D Perovskite Heterostructures. Laser Photonics Rev 12(10):1800128

    Google Scholar 

  40. Migalska-Zalas A, EL Korchi K, Chtouki T (2018) Enhanced nonlinear optical properties due to electronic delocalization in conjugated benzodifuran derivatives. Optical and Quantum Electronics 50:389. https://doi.org/10.1007/s11082-018-1659-x

    Article  CAS  Google Scholar 

  41. Lippitsch ME, Draxler S, Koller E (1992) Enhancement of the second-order hyperpolarizability of a stilbene dye by molecular interactions. Thin Solid Films 217(161):166

    Google Scholar 

  42. Zidana MD, Arfanb A, Allahham A (2017) Nonlinear optical investigations of quinine and Quinotoxine salts by Z-scan technique. Opt Laser Technol 89:137–142

    Google Scholar 

  43. Suzuki M, Yo S (1979) Inclusion compound of Cyclodextrin and Azo dye. I Methyl Orange 27(3):609–619

    CAS  Google Scholar 

  44. Binks DA, Spencer N, Wilkie J, Britton MM (2010) Magnetic resonance studies of a redox probe in a reverse sodium Bis(2-ethylhexyl)sulfosuccinate/octane/water microemulsion. J Phys Chem B 114:12558–12564

    CAS  PubMed  Google Scholar 

  45. Galiullina LF, Musabirova GS, Latfullin IA, Aganov AV, Klochkov VV (2018) Spatial structure of atorvastatin and its complex with model membrane in solution studied by NMR and theoretical calculations. J Mol Struct 1167:69–77

    CAS  Google Scholar 

  46. Galiullina LF, Blokhin DS, Aganov AV, Klochkov VV (2012) Investigation of cholesterol model of biological membrane complex by NMR spectroscopy. MRSej 14(2):12204–12210

    Google Scholar 

  47. Reeves RL, Kaiser RS, Maggio MS, Sylvestre EA, Lawton WH (1973) Analysis of the visual Spectrum of methyl Orange in solvents and in hydrophobic binding sites. Can J Chem 51(4):628–635

    CAS  Google Scholar 

  48. Galiullina LF, Aganova OV, Latfullin IA, Musabirova GS, Aganov AV, Klochkov VV (2017) Interaction of different statins with model membranes by NMR data. BBA Biomembranes 1859:295–300

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks of Ferdowsi University of Mashhad for Project no: 2/49956. This work was supported by the research grant of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sharifi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, S., Salavatovna, S.G., Azarpour, A. et al. Optical Properties of Methyl Orange-Doped Droplet and Photodynamic Therapy of Staphylococcus aureus. J Fluoresc 29, 1331–1341 (2019). https://doi.org/10.1007/s10895-019-02459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02459-0

Keywords

Navigation