Skip to main content
Log in

Calprotectin Pegylation Enhanced Its Physical and Structural Properties

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Calprotectin is member of the S-100 protein family with a wide plethora of intra-and extracellular functions. Anticancer activities, antimicrobial effects and being a qualified disease marker are among the compelling features of this protein to be used as a pharmaceutical agent. However, there are several impediments to applications of protein pharmaceuticals including: proteolytic degradation, short circulating half-life, low solubility and immunogenicity. Pegylation is a common bioconjugation polymer capable of overcoming these drawbacks. Recombinant expression and purification of calprotectin along with its pegylation would result in enhanced pharmaco-dynamic and pharmacokinetic properties. Our florescence spectroscopy and far Ultraviolet-optical density results indicate that pegylation altered the physical and structural properties of the calprotectin to become in a more stable and functionally active state. Due to enhanced pharmacodynamic and pharmacokinetic properties of the calprotectin via pegylation, this study would pave the way for better in vitro and in vivo validations of calprotectin applications in medical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

IPTG:

Isopropyl-thio-β-d-galactoside

mPEG:

Methoxy poly ethylene glychol

MRP:

Myeloid inhibitory factor related protein

Ni2+-NTA:

Nickel-nitrilotriacetic acid

PEG:

Polyethylene glycol

SDS PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

References

  1. Kligman D, Hilt DC (1988) The S100 protein family. Trends Biochem Sci 13(11):437–443

    Article  CAS  Google Scholar 

  2. Clohessy P, Golden B (1995) Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42(5):551–556

    Article  CAS  Google Scholar 

  3. Nisapakultorn K, Ross KF, Herzberg MC (2001) Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun 69(6):3692–3696

    Article  CAS  Google Scholar 

  4. Bhardwaj RS, Zotz C, Roth J, Goebeler M, Mahnke K, Falk M, Meinardus-Hager G, Sorg C, Zwadlo-Klarwasser G (1992) The calcium-binding proteins MRP8 and MRP14 form a membrane-associated heterodimer in a subset of monocytes/macrophages present in acute but absent in chronic inflammatory lesions. Eur J Immunol 22(7):1891–1897

    Article  CAS  Google Scholar 

  5. Kalia J, Raines RT (2010) Advances in bioconjugation. Curr Org Chem 14(2):138

    Article  CAS  Google Scholar 

  6. Syed S, Schuyler PD, Kulczycky M, Sheffield WP (1997) Potent antithrombin activity and delayed clearance from the circulation characterize recombinant hirudin genetically fused to albumin. Blood 89(9):3243–3252

    CAS  Google Scholar 

  7. Lyczak J, Morrison S (1994) Biological and pharmacokinetic properties of a novel immunoglobulin-CD4 fusion protein. Arch Virol 139(1–2):189–196

    Article  CAS  Google Scholar 

  8. Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R (1991) Controlled delivery systems for proteins based on poly (lactic/glycolic acid) microspheres. Pharm Res 8(6):713–720

    Article  CAS  Google Scholar 

  9. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54(4):459–476

    Article  CAS  Google Scholar 

  10. Zalipsky S, Seltzer R, Menon-Rudolph S (1992) Evaluation of a new reagent for covalent attachment of polyethylene glycol to proteins. Biotechnol Appl Biochem 15(1):100–114

    Article  CAS  Google Scholar 

  11. Zalipsky S, Lee C (1992) Use of functionalized poly (ethylene glycol) s for modification of polypeptides. In: Poly (Ethylene Glycol) Chemistry. Springer, pp 347–370

  12. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252(11):3578–3581

    CAS  Google Scholar 

  13. Gallagher SR, Wiley EA (2008) Current protocols essential laboratory techniques. (Wiley, 2007). Appendix 2

  14. Asghari H, Chegini KG, Amini A, Gheibi N (2016) Effect of poly and mono-unsaturated fatty acids on stability and structure of recombinant S100A8/A9. Int J Biol Macromol 84:35–42. doi:10.1016/j.ijbiomac.2015.11.065

    Article  CAS  Google Scholar 

  15. Gheibi N, Asghari H, Chegini KG, Sahmani M, Moghadasi M (2016) The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9. Mol Biol 50(1):136–142. doi:10.7868/s0026898415060087

    Article  CAS  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  17. Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 238(2):622–627

    CAS  Google Scholar 

  18. Heizmann C (1992) Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys 11(5):411–425

    CAS  Google Scholar 

  19. Nacken W, Roth J, Sorg C, Kerkhoff C (2003) S100A9/S100A8: myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc Res Tech 60(6):569–580

    Article  CAS  Google Scholar 

  20. Yousefi R, Imani M, Ardestani SK, Saboury AA, Gheibi N, Ranjbar B (2007) Human calprotectin: effect of calcium and zinc on its secondary and tertiary structures, and role of pH in its thermal stability. Acta Biochim et Biophys Sin 39(10):795–802

    Article  CAS  Google Scholar 

  21. Viseu MI, Carvalho TI, Costa SM (2004) Conformational transitions in β-lactoglobulin induced by cationic amphiphiles: equilibrium studies. Biophys J 86(4):2392–2402

    Article  CAS  Google Scholar 

  22. Yui S, Nakatani Y, Mikami M (2003) Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull 26(6):753–760

    Article  CAS  Google Scholar 

  23. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10(2):158–164

    Article  CAS  Google Scholar 

  24. Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor—related proteins 8 and 14). J Infect Dis 182(4):1272–1275

    Article  CAS  Google Scholar 

  25. Hayden JA, Brophy MB, Cunden LS, Nolan EM (2012) High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 135(2):775–787

    Article  Google Scholar 

  26. Mørk G, Schjerven H, Mangschau L, Søyland E, Brandtzaeg P (2003) Proinflammatory cytokines upregulate expression of calprotectin (L1 protein, MRP-8/MRP-14) in cultured human keratinocytes. Br J Dermatol 149(3):484–491

    Article  Google Scholar 

  27. Korndörfer IP, Brueckner F, Skerra A (2007) The crystal structure of the human (S100A8/S100A9) 2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J Mol Biol 370(5):887–898

    Article  Google Scholar 

  28. Vogl T, Leukert N, Barczyk K, Strupat K, Roth J (2006) Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim et Biophys Acta 1763(11):1298–1306

    Article  CAS  Google Scholar 

  29. Vogl T, Roth J, Sorg C, Hillenkamp F, Strupat K (1999) Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 10(11):1124–1130

    Article  CAS  Google Scholar 

  30. Davis FF (2002) The origin of pegnology. Adv Drug Deliv Rev 54(4):457–458

    Article  CAS  Google Scholar 

  31. Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 54(4):453–456

    Article  CAS  Google Scholar 

  32. Harris JM (1992) Poly (Ethylene Glycol) chemistry, biotechnical and biomedical applications, vol 59. Plenum Publishing, New York, pp xxi 385

    Google Scholar 

  33. Katre NV (1993) The conjugation of proteins with polyethylene glycol and other polymers: altering properties of proteins to enhance their therapeutic potential. Adv Drug Deliv Rev 10(1):91–114

    Article  CAS  Google Scholar 

  34. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22(5):405–417

    Article  CAS  Google Scholar 

  35. Shafer SG, Harris SGJM (1986) Preparation of cyanuric-chloride activated poly(ethylene glycol). J Polym Sci Part A Poly Chem 24(2):375–378. doi:10.1002/pola.1986.080240214

    Article  CAS  Google Scholar 

  36. Ross JR (1991) Practical handbook of biochemistry and molecular biology. In: Fasman GD (ed) Biochemical education. CRC Press, Boca Raton, Florida, USA. $00 ISBN 0-8493-3705-4. 19(2):95–96. doi:10.1016/0307-4412(91)90020-9

  37. Bruzzese E, Raia V, Gaudiello G, Polito G, Buccigrossi V, Formicola V, Guarino A (2004) Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment Pharmacol Ther 20(7):813–819

    Article  CAS  Google Scholar 

  38. Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjugate Chem 3(1):2–13

    Article  CAS  Google Scholar 

  39. Akiyama H, Ikeda K, Katoh M, McGeer EG, McGeer PL (1994) Expression of MRP14, 27E10, interferon-α and leukocyte common antigen by reactive microglia in postmortem human brain tissue. J Neuroimmunol 50(2):195–201

    Article  CAS  Google Scholar 

  40. Bernstein SL, Wyttenbach T, Baumketner A, Shea J-E, Bitan G, Teplow DB, Bowers MT (2005) Amyloid β-protein: monomer structure and early aggregation states of Aβ42 and its Pro19 alloform. J Am Chem Soc 127(7):2075–2084

    Article  CAS  Google Scholar 

  41. Hope J, Shearman MS, Baxter HC, Chong A, Kelly SM, Price NC (1996) Cytotoxicity of prion protein peptide (PrP 106–126) differs in mechanism from the cytotoxic activity of the Alzheimer’s disease amyloid peptide, Aβ25–35. Neurodegeneration 5(1):1–11

    Article  CAS  Google Scholar 

  42. Ishikawa K, Nakagawa A, Tanaka I, Suzuki M, Nishihira J (2000) The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 Å resolution. Acta Crystallogr Sect D Biol Crystallogr 56(5):559–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Qazvin University of medical sciences for supporting the conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nematollah Gheibi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavari, A., Azad, M., Mobarra, N. et al. Calprotectin Pegylation Enhanced Its Physical and Structural Properties. Protein J 35, 363–370 (2016). https://doi.org/10.1007/s10930-016-9680-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9680-z

Keywords

Navigation