Skip to main content
Log in

WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and virulence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein–protein or protein–DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array of functions performed by different WD40 domain containing proteins, their domain organization and functional conservation during the course of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085–2097

    Article  CAS  Google Scholar 

  2. Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    Article  CAS  Google Scholar 

  3. Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574. https://doi.org/10.1016/j.tibs.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Xu C, Min J (2011) Structure and function of WD40 domain proteins. Protein Cell 2:202–214. https://doi.org/10.1007/s13238-011-1018-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134:117–131. https://doi.org/10.1006/jsbi.2001.4392

    Article  CAS  PubMed  Google Scholar 

  6. van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4:50. https://doi.org/10.1186/1471-2164-4-50

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ouyang Y, Huang X, Lu Z, Yao J (2012) Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics 13:100. https://doi.org/10.1186/1471-2164-13-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232. https://doi.org/10.1093/nar/gkn808

    Article  CAS  PubMed  Google Scholar 

  9. Janda L, Tichý P, Spízek J, Petrícek M (1996) A deduced Thermomonospora curvata protein containing serine/threonine protein kinase and WD-repeat domains. J Bacteriol 178:1487–1489

    Article  CAS  Google Scholar 

  10. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300. https://doi.org/10.1038/371297a0

    Article  CAS  PubMed  Google Scholar 

  11. Voegtli WC, Madrona AY, Wilson DK (2003) The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J Biol Chem 278:34373–34379. https://doi.org/10.1074/jbc.M302773200

    Article  CAS  PubMed  Google Scholar 

  12. Faber HR, Groom CR, Baker HM et al (1995) 1.8 A crystal structure of the C-terminal domain of rabbit serum haemopexin. Structure 3:551–559

    Article  CAS  Google Scholar 

  13. Murzin AG (1992) Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins 14:191–201. https://doi.org/10.1002/prot.340140206

    Article  CAS  PubMed  Google Scholar 

  14. Whittle JRR, Schwartz TU (2010) Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J Cell Biol 190:347–361. https://doi.org/10.1083/jcb.201003092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee S, Rojas CM, Ishiga Y et al (2013) Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE 8:e82445. https://doi.org/10.1371/journal.pone.0082445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J, Ding P, Sun T et al (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–2158. https://doi.org/10.1104/pp.112.212431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C et al (2005) ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J Cell Mol Biol 43:165–180. https://doi.org/10.1111/j.1365-313X.2005.02440.x

    Article  CAS  Google Scholar 

  18. Jing H, Takagi J, Liu JH et al (2002) Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins. Structure 10(10):1453–1464

    Article  CAS  Google Scholar 

  19. Ponting CP1, Aravind L, Schultz J et al (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289(4):729–745

    Article  CAS  Google Scholar 

  20. Neer EJ, Schmidt CJ, Smith T (1993) LIS is more. Nat Genet 5:3–4. https://doi.org/10.1038/ng0993-3

    Article  CAS  PubMed  Google Scholar 

  21. Petrícková K, Hasek J, Benada O, Petrícek M (2006) The WD-40 repeat protein PkwA of Thermomonospora curvata is associated with rapid growth and is localized in the tips of growing hyphae. FEMS Microbiol Lett 258:187–193. https://doi.org/10.1111/j.1574-6968.2006.00215.x

    Article  CAS  PubMed  Google Scholar 

  22. Stoytcheva Z, Joshi B, Spízek J, Tichý P (2000) WD-repeat protein encoding genes among prokaryotes of the Streptomyces genus. Folia Microbiol 45:407–413

    Article  CAS  Google Scholar 

  23. Ulrych A, Goldová J, Petříček M et al (2013) The pleiotropic effect of WD-40 domain containing proteins on cellular differentiation and production of secondary metabolites in Streptomyces coelicolor. Mol Biosyst 9:1453–1469. https://doi.org/10.1039/c3mb25542e

    Article  CAS  PubMed  Google Scholar 

  24. Hu X-J, Li T, Wang Y et al (2017) Prokaryotic and highly-repetitive WD40 proteins: a systematic study. Sci Rep 7:10585. https://doi.org/10.1038/s41598-017-11115-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Wu-Scharf D, Jeong B, Cerutti H (2002) A WD40-repeat containing protein, similar to a fungal co-repressor, is required for transcriptional gene silencing in Chlamydomonas. Plant J Cell Mol Biol 31:25–36

    Article  Google Scholar 

  26. Heintzelman MB, Mateer MJ (2008) GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. J Parasitol 94:158–168. https://doi.org/10.1645/GE-1339.1

    Article  CAS  PubMed  Google Scholar 

  27. Cardenas D, Carter PM, Nation CS et al (2015) LACK, a RACK1 ortholog, facilitates cytochrome c oxidase subunit expression to promote Leishmania major fitness. Mol Microbiol 96:95–109. https://doi.org/10.1111/mmi.12924

    Article  CAS  PubMed  Google Scholar 

  28. Regmi S, Rothberg KG, Hubbard JG, Ruben L (2008) The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis. Mol Microbiol 70:724–745. https://doi.org/10.1111/j.1365-2958.2008.06443.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rothberg KG, Burdette DL, Pfannstiel J et al (2006) The RACK1 homologue from Trypanosoma brucei is required for the onset and progression of cytokinesis. J Biol Chem 281:9781–9790. https://doi.org/10.1074/jbc.M600133200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dahan-Pasternak N, Nasereddin A, Kolevzon N et al (2013) PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 126:3055–3069. https://doi.org/10.1242/jcs.122119

    Article  CAS  PubMed  Google Scholar 

  31. Buensuceso CS, Obergfell A, Soriani A et al (2005) Regulation of outside-in signaling in platelets by integrin-associated protein kinase C beta. J Biol Chem 280:644–653. https://doi.org/10.1074/jbc.M410229200

    Article  CAS  PubMed  Google Scholar 

  32. von Bohl A, Kuehn A, Simon N et al (2015) A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny. Malar J 14:435. https://doi.org/10.1186/s12936-015-0967-x

    Article  CAS  Google Scholar 

  33. Yuan L, Su Y, Zhou S et al (2017) A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae. Fungal Genet Biol 99:52–61. https://doi.org/10.1016/j.fgb.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt K, Smolinski N, Neumann P et al (2017) Asc1p/RACK1 connects ribosomes to eukaryotic phosphosignaling. Mol Cell Biol. https://doi.org/10.1128/MCB.00279-16

    Article  PubMed  PubMed Central  Google Scholar 

  35. Valerius O, Kleinschmidt M, Rachfall N et al (2007) The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol Cell Proteomics 6:1968–1979. https://doi.org/10.1074/mcp.M700184-MCP200

    Article  CAS  PubMed  Google Scholar 

  36. Zeller CE, Parnell SC, Dohlman HG (2007) The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 282:25168–25176. https://doi.org/10.1074/jbc.M702569200

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Berndt P, Xia X et al (2011) A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol Microbiol 81:1484–1498. https://doi.org/10.1111/j.1365-2958.2011.07783.x

    Article  CAS  PubMed  Google Scholar 

  38. Pöggeler S, Kück U (2004) A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3:232–240

    Article  Google Scholar 

  39. Nordzieke S, Zobel T, Fränzel B et al (2015) A fungal sarcolemmal membrane-associated protein (SLMAP) homolog plays a fundamental role in development and localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. Eukaryot Cell 14:345–358. https://doi.org/10.1128/EC.00241-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simonin AR, Rasmussen CG, Yang M, Glass NL (2010) Genes encoding a striatin-like protein (ham-3) and a forkhead associated protein (ham-4) are required for hyphal fusion in Neurospora crassa. Fungal Genet Biol 47:855–868. https://doi.org/10.1016/j.fgb.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  41. Dettmann A, Heilig Y, Ludwig S et al (2013) HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol Microbiol 90:796–812. https://doi.org/10.1111/mmi.12399

    Article  CAS  PubMed  Google Scholar 

  42. Yang D-H, Maeng S, Bahn Y-S (2013) Msi1-like (MSIL) proteins in fungi. Mycobiology 41:1–12. https://doi.org/10.5941/MYCO.2013.41.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayashi T, Fujita Y, Iwasaki O et al (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729. https://doi.org/10.1016/j.cell.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  44. Espagne E, Balhadère P, Penin M-L et al (2002) HET-E and HET-D belong to a new subfamily of WD40 proteins involved in vegetative incompatibility specificity in the fungus Podospora anserina. Genetics 161:71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Paoletti M, Saupe SJ, Clavé C (2007) Genesis of a fungal non-self recognition repertoire. PLoS ONE 2:e283. https://doi.org/10.1371/journal.pone.0000283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai Z, Chai Y, Zhang C et al (2015) The Gβ-like protein CpcB is required for hyphal growth, conidiophore morphology and pathogenicity in Aspergillus fumigatus. Fungal Genet Biol 81:120–131. https://doi.org/10.1016/j.fgb.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  47. Chin C, Lai W-C, Lee T-L et al (2013) Dissection of the Candida albicans Cdc4 protein reveals the involvement of domains in morphogenesis and cell flocculation. J Biomed Sci 20:97. https://doi.org/10.1186/1423-0127-20-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matar KAO, Chen X, Chen D et al (2017) WD40-repeat protein MoCreC is essential for carbon repression and is involved in conidiation, growth and pathogenicity of Magnaporthe oryzae. Curr Genet 63:685–696. https://doi.org/10.1007/s00294-016-0668-1

    Article  CAS  PubMed  Google Scholar 

  49. Adams DR, Ron D, Kiely PA (2011) RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22. https://doi.org/10.1186/1478-811X-9-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bradford W, Buckholz A, Morton J et al (2013) Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. Sci Signal 6:ra37. https://doi.org/10.1126/scisignal.2003768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V et al (2012) Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol Plant 5:98–114. https://doi.org/10.1093/mp/ssr082

    Article  CAS  PubMed  Google Scholar 

  52. Torres MA, Morales J, Sánchez-Rodríguez C et al (2013) Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. Mol Plant Microbe Interact 26:686–694. https://doi.org/10.1094/MPMI-10-12-0236-R

    Article  CAS  PubMed  Google Scholar 

  53. Trusov Y, Rookes JE, Chakravorty D et al (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220. https://doi.org/10.1104/pp.105.069625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trusov Y, Rookes JE, Tilbrook K et al (2007) Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell 19:1235–1250. https://doi.org/10.1105/tpc.107.050096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Trusov Y, Sewelam N, Rookes JE et al (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J Cell Mol Biol 58:69–81. https://doi.org/10.1111/j.1365-313X.2008.03755.x

    Article  CAS  Google Scholar 

  56. Zhang W, He SY, Assmann SM (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J Cell Mol Biol 56:984–996. https://doi.org/10.1111/j.1365-313X.2008.03657.x

    Article  CAS  Google Scholar 

  57. Wang Y, Liu R, Chen L et al (2009) Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes. J Cell Sci 122:2673–2685. https://doi.org/10.1242/jcs.049023

    Article  CAS  PubMed  Google Scholar 

  58. Morohashi K, Zhao M, Yang M et al (2007) Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol 145:736–746. https://doi.org/10.1104/pp.107.104521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao M, Morohashi K, Hatlestad G et al (2008) The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999. https://doi.org/10.1242/dev.016873

    Article  CAS  PubMed  Google Scholar 

  60. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. https://doi.org/10.1038/35081178

    Article  CAS  PubMed  Google Scholar 

  61. Kliebenstein DJ (2013) Making new molecules—evolution of structures for novel metabolites in plants. Curr Opin Plant Biol 16:112–117. https://doi.org/10.1016/j.pbi.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  62. Bui M, Lim N, Sijacic P, Liu Z (2011) LEUNIG_HOMOLOG and LEUNIG regulate seed mucilage extrusion in Arabidopsis. J Integr Plant Biol 53:399–408. https://doi.org/10.1111/j.1744-7909.2011.01036.x

    Article  CAS  PubMed  Google Scholar 

  63. Zhong R, Burk DH, Morrison WH, Ye Z-H (2004) FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16:3242–3259. https://doi.org/10.1105/tpc.104.027466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bashline L, Li S, Zhu X, Gu Y (2015) The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. Proc Natl Acad Sci USA 112:12870–12875. https://doi.org/10.1073/pnas.1509292112

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Persson S, Hirst J et al (2015) Change your TPLATE, change your fate: plant CME and beyond. Trends Plant Sci 20:41–48. https://doi.org/10.1016/j.tplants.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  66. Li H, He Z, Lu G et al (2007) A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell 19:2403–2416. https://doi.org/10.1105/tpc.107.053579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu J, Jeong JC, Zhu Y et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105:4945–4950. https://doi.org/10.1073/pnas.0801029105

    Article  PubMed  Google Scholar 

  68. Mehdi S, Derkacheva M, Ramström M et al (2016) The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. Plant Cell 28:42–54. https://doi.org/10.1105/tpc.15.00763

    Article  CAS  PubMed  Google Scholar 

  69. Uljon S, Xu X, Durzynska I et al (2016) Structural basis for substrate selectivity of the E3 ligase COP1. Structure 24:687–696. https://doi.org/10.1016/j.str.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beris D, Kapolas G, Livanos P et al (2016) RNAi-mediated silencing of the Arabidopsis thaliana ULCS1 gene, encoding a WDR protein, results in cell wall modification impairment and plant infertility. Plant Sci Int J Exp Plant Biol 245:71–83. https://doi.org/10.1016/j.plantsci.2016.01.008

    Article  CAS  Google Scholar 

  71. Lee J-Y, Lee H-S, Wi S-J et al (2009) Dual functions of Nicotiana benthamiana Rae1 in interphase and mitosis. Plant J Cell Mol Biol 59:278–291. https://doi.org/10.1111/j.1365-313X.2009.03869.x

    Article  CAS  Google Scholar 

  72. Zeng CJT, Lee Y-RJ, Liu B (2009) The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129–1140. https://doi.org/10.1105/tpc.109.065953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ron D, Chen CH, Caldwell J et al (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91:839–843

    Article  CAS  Google Scholar 

  74. Castets F, Bartoli M, Barnier JV et al (1996) A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J Cell Biol 134:1051–1062

    Article  CAS  Google Scholar 

  75. Baillat G, Moqrich A, Castets F et al (2001) Molecular cloning and characterization of phocein, a protein found from the Golgi complex to dendritic spines. Mol Biol Cell 12:663–673

    Article  CAS  Google Scholar 

  76. Chen H-W, Marinissen MJ, Oh S-W et al (2002) CKA, a novel multidomain protein, regulates the JUN N-terminal kinase signal transduction pathway in Drosophila. Mol Cell Biol 22:1792–1803

    Article  CAS  Google Scholar 

  77. Tanti GK, Goswami SK (2014) SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med 75C:1–13. https://doi.org/10.1016/j.freeradbiomed.2014.07.009

    Article  CAS  Google Scholar 

  78. Tanti GK, Pandey S, Goswami SK (2015) SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 463:524–531. https://doi.org/10.1016/j.bbrc.2015.05.069

    Article  CAS  PubMed  Google Scholar 

  79. Royet J, Bouwmeester T, Cohen SM (1998) Notchless encodes a novel WD40-repeat-containing protein that modulates Notch signaling activity. EMBO J 17:7351–7360. https://doi.org/10.1093/emboj/17.24.7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu Y, Wang Y, Xia C et al (2004) WDR26: a novel Gbeta-like protein, suppresses MAPK signaling pathway. J Cell Biochem 93:579–587. https://doi.org/10.1002/jcb.20175

    Article  CAS  PubMed  Google Scholar 

  81. Shen Z, Sathyan KM, Geng Y et al (2010) A WD-repeat protein stabilizes ORC binding to chromatin. Mol Cell 40:99–111. https://doi.org/10.1016/j.molcel.2010.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tyler JK, Collins KA, Prasad-Sinha J et al (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21:6574–6584

    Article  CAS  Google Scholar 

  83. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104

    Article  CAS  Google Scholar 

  84. Hu Y, Ding L, Spencer DM, Núñez G (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 273:33489–33494

    Article  CAS  Google Scholar 

  85. Zou H, Henzel WJ, Liu X et al (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  CAS  Google Scholar 

  86. van Leuken R, Clijsters L, Wolthuis R (2008) To cell cycle, swing the APC/C. Biochim Biophys Acta 1786:49–59. https://doi.org/10.1016/j.bbcan.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  87. Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14:369–381. https://doi.org/10.1038/nrm3582

    Article  CAS  PubMed  Google Scholar 

  88. Taguchi S ichi, Honda K, Sugiura K et al (2002) Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett 519:59–65

    Article  CAS  Google Scholar 

  89. de Hostos EL, Bradtke B, Lottspeich F et al (1991) Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J 10:4097–4104

    Article  Google Scholar 

  90. Rybakin V, Clemen CS (2005) Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. BioEssays 27:625–632. https://doi.org/10.1002/bies.20235

    Article  CAS  PubMed  Google Scholar 

  91. Wei X, Song L, Jiang L et al (2010) Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells. Biochem Biophys Res Commun 393:860–863. https://doi.org/10.1016/j.bbrc.2010.02.099

    Article  CAS  PubMed  Google Scholar 

  92. Manning J, Kumar S (2007) NEDD1: function in microtubule nucleation, spindle assembly and beyond. Int J Biochem Cell Biol 39:7–11. https://doi.org/10.1016/j.biocel.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  93. Manning JA, Shalini S, Risk JM et al (2010) A direct interaction with NEDD1 regulates gamma-tubulin recruitment to the centrosome. PLoS ONE 5:e9618. https://doi.org/10.1371/journal.pone.0009618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaźmierczak-Barańska J, Pęczek Ł, Przygodzka P, Cieślak MJ (2015) Downregulation of striatin leads to hyperphosphorylation of MAP2, induces depolymerization of microtubules and inhibits proliferation of HEK293T cells. FEBS Lett 589:222–230. https://doi.org/10.1016/j.febslet.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  95. Hyodo T, Ito S, Hasegawa H et al (2012) Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 287:25019–25029. https://doi.org/10.1074/jbc.M112.372342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pandey S, Talukdar I, Jain BP, Goswami SK (2017) GSK3β and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle. Sci Rep 7:7555. https://doi.org/10.1038/s41598-017-08085-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jain BP, Pandey S, Saleem N et al (2017) SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones. https://doi.org/10.1007/s12192-017-0816-7

    Article  PubMed  PubMed Central  Google Scholar 

  98. Takagaki Y, Manley JL (1992) A human polyadenylation factor is a G protein beta-subunit homologue. J Biol Chem 267:23471–23474

    CAS  PubMed  Google Scholar 

  99. Ang Y-S, Tsai S-Y, Lee D-F et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183–197. https://doi.org/10.1016/j.cell.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wysocka J, Swigut T, Xiao H et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90. https://doi.org/10.1038/nature04815

    Article  CAS  PubMed  Google Scholar 

  101. Wysocka J, Swigut T, Milne TA et al (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872. https://doi.org/10.1016/j.cell.2005.03.036

    Article  CAS  PubMed  Google Scholar 

  102. Ren Q, Zhou J, Zhao X-F, Wang J-X (2011) Molecular cloning and characterization of a receptor for activated protein kinase C1 (RACK1) from Chinese white shrimp; Fenneropenaeus chinensis. Dev Comp Immunol 35:629–634. https://doi.org/10.1016/j.dci.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  103. Bielig H, Zurek B, Kutsch A et al (2009) A function for AAMP in Nod2-mediated NF-kappaB activation. Mol Immunol 46:2647–2654. https://doi.org/10.1016/j.molimm.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  104. Adler HJ, Sanovich E, Brittan-Powell EF et al (2008) WDR1 presence in the songbird basilar papilla. Hear Res 240:102–111. https://doi.org/10.1016/j.heares.2008.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Luxenburg C, Heller E, Pasolli HA et al (2015) Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cell polarity. Nat Cell Biol 17:592–604. https://doi.org/10.1038/ncb3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Poukkula M, Hakala M, Pentinmikko N et al (2014) GMF promotes leading-edge dynamics and collective cell migration in vivo. Curr Biol 24:2533–2540. https://doi.org/10.1016/j.cub.2014.08.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yuan B, Wan P, Chu D et al (2014) A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol 184:1967–1980. https://doi.org/10.1016/j.ajpath.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  108. Marikawa Y, Elinson RP (1998) beta-TrCP is a negative regulator of Wnt/beta-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech Dev 77:75–80

    Article  CAS  Google Scholar 

  109. Simon J, Bornemann D, Lunde K, Schwartz C (1995) The extra sex combs product contains WD40 repeats and its time of action implies a role distinct from other Polycomb group products. Mech Dev 53:197–208

    Article  CAS  Google Scholar 

  110. Lim NR, Shohayeb B, Zaytseva O et al (2017) Glial-specific functions of microcephaly protein WDR62 and interaction with the mitotic kinase AURKA are essential for Drosophila brain growth. Stem Cell Rep 9:32–41. https://doi.org/10.1016/j.stemcr.2017.05.015

    Article  CAS  Google Scholar 

  111. Gori F, Friedman L, Demay MB (2005) Wdr5, a novel WD repeat protein, regulates osteoblast and chondrocyte differentiation in vivo. J Musculoskelet Neuronal Interact 5:338–339

    CAS  PubMed  Google Scholar 

  112. Roberts SG (2000) Mechanisms of action of transcription activation and repression domains. Cell Mol Life Sci 57:1149–1160

    Article  CAS  Google Scholar 

  113. Hendrickson TW, Perrone CA, Griffin P et al (2004) IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending. Mol Biol Cell 15:5431–5442. https://doi.org/10.1091/mbc.E04-08-0694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Steimle PA, Naismith T, Licate L, Egelhoff TT (2001) WD repeat domains target dictyostelium myosin heavy chain kinases by binding directly to myosin filaments. J Biol Chem 276:6853–6860. https://doi.org/10.1074/jbc.M008992200

    Article  CAS  PubMed  Google Scholar 

  115. Tarricone C, Perrina F, Monzani S et al (2004) Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44:809–821. https://doi.org/10.1016/j.neuron.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  116. Cheng H, He X, Moore C (2004) The essential WD repeat protein Swd2 has dual functions in RNA polymerase II transcription termination and lysine 4 methylation of histone H3. Mol Cell Biol 24:2932–2943

    Article  CAS  Google Scholar 

  117. Hoecker U, Tepperman JM, Quail PH (1999) SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284:496–499

    Article  CAS  Google Scholar 

  118. Yoon Y-M, Baek K-H, Jeong S-J et al (2004) WD repeat-containing mitotic checkpoint proteins act as transcriptional repressors during interphase. FEBS Lett 575:23–29. https://doi.org/10.1016/j.febslet.2004.07.089

    Article  CAS  PubMed  Google Scholar 

  119. Gratenstein K, Heggestad AD, Fortun J et al (2005) The WD-repeat protein GRWD1: potential roles in myeloid differentiation and ribosome biogenesis. Genomics 85:762–773. https://doi.org/10.1016/j.ygeno.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  120. Klein S, Reuveni H, Levitzki A (2000) Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc Natl Acad Sci USA 97:3219–3223. https://doi.org/10.1073/pnas.050015797

    Article  CAS  PubMed  Google Scholar 

  121. Zhu X, Démolis N, Jacquet M, Michaeli T (2000) MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr Genet 38:60–70

    Article  CAS  Google Scholar 

  122. Mayer RE, Hendrix P, Cron P et al (1991) Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry 30:3589–3597

    Article  CAS  Google Scholar 

  123. Pallas DC, Weller W, Jaspers S et al (1992) The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J Virol 66:886–893

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Clark MA, Bomalaski JS, Conway TM et al (1990) The role of phospholipase A2 activating protein (PLAP) in regulating prostanoid production in smooth muscle and endothelial cells following leukotriene D4 treatment. Adv Exp Med Biol 275:125–144

    Article  CAS  Google Scholar 

  125. Sapra AK, Arava Y, Khandelia P, Vijayraghavan U (2004) Genome-wide analysis of pre-mRNA splicing: intron features govern the requirement for the second-step factor, Prp17 in Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Biol Chem 279:52437–52446. https://doi.org/10.1074/jbc.M408815200

    Article  CAS  PubMed  Google Scholar 

  126. Spector MS, Raff A, DeSilva H et al (1997) Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol 17:545–552

    Article  CAS  Google Scholar 

  127. Pryer NK, Salama NR, Schekman R, Kaiser CA (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J Cell Biol 120:865–875

    Article  CAS  Google Scholar 

  128. Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62:465–503

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tieu Q, Okreglak V, Naylor K, Nunnari J (2002) The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 158:445–452. https://doi.org/10.1083/jcb.200205031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zeng C, Goodluck H, Qin X et al (2016) Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 small GTPase phosphorylation and activation. Am J Physiol Endocrinol Metab 311:E772–E780. https://doi.org/10.1152/ajpendo.00189.2016

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ashery U, Bielopolski N, Barak B, Yizhar O (2009) Friends and foes in synaptic transmission: the role of tomosyn in vesicle priming. Trends Neurosci 32:275–282. https://doi.org/10.1016/j.tins.2009.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Honoré B, Baandrup U, Nielsen S, Vorum H (2002) Endonuclein is a cell cycle regulated WD-repeat protein that is up-regulated in adenocarcinoma of the pancreas. Oncogene 21:1123–1129. https://doi.org/10.1038/sj.onc.1205186

    Article  PubMed  Google Scholar 

  133. Halder T, Pawelec G, Kirkin AF et al (1997) Isolation of novel HLA-DR restricted potential tumor-associated antigens from the melanoma cell line FM3. Cancer Res 57:3238–3244

    CAS  PubMed  Google Scholar 

  134. Benjafield AV, Jeyasingam CL, Nyholt DR et al (1998) G-protein beta3 subunit gene (GNB3) variant in causation of essential hypertension. Hypertension 32:1094–1097

    Article  CAS  Google Scholar 

  135. Handschug K, Sperling S, Yoon SJ et al (2001) Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet 10:283–290

    Article  CAS  Google Scholar 

  136. Tullio-Pelet A, Salomon R, Hadj-Rabia S et al (2000) Mutant WD-repeat protein in triple-A syndrome. Nat Genet 26:332–335. https://doi.org/10.1038/81642

    Article  CAS  PubMed  Google Scholar 

  137. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    CAS  PubMed  Google Scholar 

  138. Parisi MA, Doherty D, Eckert ML et al (2006) AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 43:334–339. https://doi.org/10.1136/jmg.2005.036608

    Article  CAS  PubMed  Google Scholar 

  139. Lo Nigro C, Chong CS, Smith AC et al (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6:157–164

    Article  CAS  Google Scholar 

  140. Henning KA, Li L, Iyer N et al (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:555–564

    Article  CAS  Google Scholar 

  141. Bassi MT, Ramesar RS, Caciotti B et al (1999) X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet 64:1604–1616. https://doi.org/10.1086/302408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wong M, Hyodo T, Asano E et al (2014) Silencing of STRN4 suppresses the malignant characteristics of cancer cells. Cancer Sci 105:1526–1532. https://doi.org/10.1111/cas.12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124. https://doi.org/10.1038/nature09819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fong HK, Hurley JB, Hopkins RS et al (1986) Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci USA 83:2162–2166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Shyamal K. Goswami, School of Life Sciences, Jawaharlal Nehru University New Delhi for helping in manuscript revision work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddhi Prakash Jain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, B.P., Pandey, S. WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions. Protein J 37, 391–406 (2018). https://doi.org/10.1007/s10930-018-9785-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9785-7

Keywords

Navigation