Skip to main content
Log in

Effects of Orientation on the Stability and Affinity of Antibody–GNP Conjugation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In medicine, gold nanoparticles are widely used because of its unique properties. They are usually attached to a monoclonal antibody in treatment and diagnosis. Computational and laboratory work has demonstrated that the structure of the protein can change after interaction with gold nanoparticle and the effect of nanoparticle on the protein is dependent on the type of bond between them. Thus, finding out how nanoparticles affect the protein structure can help us to design the optimal complex of gold nanoparticle–antibody. In the present study, docking and molecular dynamic simulation were performed to obtain an insight at the molecular level in the binding of immunoglobulin G to the Gold nanoparticles, the structure change in immunoglobulin G, and binding energies of Fab and Fc domains of Immunoglobulin G to the GNP. We found the Fab region was more stable than the Fc region when bound to the GNP surface and it also had less structural changes. In neutral pH, Van der Waals interactions contribute more to the Fab–GNP interaction compared to electrostatic interactions; However, in Fc–GNP interaction, the main contributor is the electrostatic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pham VD, Hoang H, Phan TH, Conrad U, Chu HH (2012) Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development. Adv Nat Sci Nanosci Nanotechnol 3(4):045017

    Article  CAS  Google Scholar 

  2. Ramezani F (2012) Protein bands detection by nanoparticles after paper chromatography. Int J Nanosci Nanotechnol 8(3):181–184

    Google Scholar 

  3. Matijević E (2011) Fine particles in medicine and pharmacy. Springer, New York

    Google Scholar 

  4. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28

    Article  Google Scholar 

  5. Austin LA, MacKey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88(7):1391–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen ZP et al (2007) A sensitive immunosensor using colloidal gold as electrochemical label. Talanta 72(5):1800–1804

    Article  CAS  PubMed  Google Scholar 

  7. Ozboyaci M, Kokh DB, Wade RC (2016) Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations. Phys Chem Chem Phys 18(15):10191–10200

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Dimitrov K (2011) Conjugation of immunoglobulin M to gold nanoparticles. Curr Nanosci 7(6):874–878

    Article  CAS  Google Scholar 

  9. Bailes J, Mayoss S, Teale P, Soloviev M (2012) Gold nanoparticle antibody conjugates for use in competitive lateral flow assays. Methods Mol Biol 906:45–55

    CAS  PubMed  Google Scholar 

  10. Yin L, Yang Y, Wang S, Wang W, Zhang S, Tao N (2015) Measuring binding kinetics of antibody-conjugated gold nanoparticles with intact cells. Small 11(31):3782–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geng SB et al (2016) Facile preparation of stable antibody-gold conjugates and application to affinity-capture self-interaction nanoparticle spectroscopy. Bioconjug Chem 27(10):2287–2300

    Article  CAS  PubMed  Google Scholar 

  12. Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD (2006) Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J Am Chem Soc 128(8):2635–2640

    Article  CAS  PubMed  Google Scholar 

  13. Tan G et al (2015) Conjugation of polymer-coated gold nanoparticles with antibodies—synthesis and characterization. Nanomaterials 5(3):1297–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sens Res 9:17–22

    Article  Google Scholar 

  15. De Paoli Lacerda SH et al (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379

    Article  CAS  Google Scholar 

  16. Kaur K, Forrest JA (2012) Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Langmuir 28(5):2736–2744

    Article  CAS  PubMed  Google Scholar 

  17. Dominguez-Medina S et al (2016) Adsorption and unfolding of a single protein triggers nanoparticle aggregation. ACS Nano 10(2):2103–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramezani F, Rafii-Tabar H (2015) An in-depth view of human serum albumin corona on gold nanoparticles. Mol BioSyst 11(2):454–462

    Article  CAS  PubMed  Google Scholar 

  19. Ramezani F, Amanlou M (2014) Gold nanoparticle shape effects on human serum albumin corona interface: a molecular dynamic study. J Nanoparticle Res 16(7):2512

    Article  CAS  Google Scholar 

  20. Ramezani F, Habibi M, Rafii-Tabar H, Amanlou M (2015) Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study. DARU J Pharm Sci 23(1):9

    Article  CAS  Google Scholar 

  21. Mukhopadhyay A, Basu S, Singha S, Patra HK (2018) Inner-view of nanomaterial incited protein conformational changes: insights into designable interaction. Research 2018:1–15

    Article  Google Scholar 

  22. Ramezani F, Amanlou M, Rafii-Tabar H (2014) Comparison of amino acids interaction with gold nanoparticle. Amino Acids 46(4):911–920

    Article  CAS  PubMed  Google Scholar 

  23. Gagner JE, Lopez MD, Dordick JS, Siegel RW (2011) Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32(29):7241–7252

    Article  CAS  PubMed  Google Scholar 

  24. Khan S, Gupta A, Verma NC, Nandi CK (2015) Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size. J Chem Phys 143(16):164709

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Moustafa Y, Huo Q (2014) Different interaction modes of biomolecules with citrate-capped gold nanoparticles. ACS Appl Mater Interfaces 6(23):21184–21192

    Article  CAS  PubMed  Google Scholar 

  26. Johnson N, Frenn M, Feetham S, Simpson P (2011) Autism spectrum disorder: parenting stress, family functioning and health-related quality of life. Fam Syst Health 29(3):232–252

    Article  PubMed  Google Scholar 

  27. Brancolini G, Kokh DB, Wade RC, Corni S (2012) Docking of ubiquitin to gold nanoparticles. ACS Nano 11:9863–9878

    Article  CAS  Google Scholar 

  28. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960

    Article  CAS  Google Scholar 

  29. Guillot B (2002) Summary for policymakers. In: Intergovernmental Panel on Climate Change (ed) Climate change 2013—the physical science basis, vol 101. Cambridge University Press, Cambridge, pp 1–30

    Google Scholar 

  30. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: amessage-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  31. Lindahl E, Hess B, van der Spoel D D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317

    Article  CAS  Google Scholar 

  32. van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  CAS  Google Scholar 

  33. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  34. Pronk S et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abraham MJ et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  36. Wright LB, Rodger PM, Corni S, Walsh TR (2013) GolP-CHARMM: first-principles based force fields for the interaction of proteins with Au (111) and Au (100). J Chem Theory Comput 9(3):1616–1630

    Article  CAS  PubMed  Google Scholar 

  37. Hünenberger PH (2005) Thermostat algorithms for molecular dynamics simulations. In: Holm C, Kremer K (eds) Advances in polymer science, vol 173. Springer, Berlin, pp 105–149

    Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):3–38

    Article  Google Scholar 

Download references

Funding

This work has been supported by the IRAN University of Medical Sciences (grant number 31520) and the School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, IRAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Ramezani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, F. Effects of Orientation on the Stability and Affinity of Antibody–GNP Conjugation. Protein J 38, 134–141 (2019). https://doi.org/10.1007/s10930-019-09812-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09812-z

Keywords

Navigation