Skip to main content
Log in

Solubility Measurements and Prediction of Coenzyme Q10 Solubility in Different Solvent Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of coenzyme Q10 in ethyl acetate, n-hexane, 1-butanol, 1-propanol, 2-propanol and ethanol in the temperature range 270.15–320.15 K, under atmospheric pressure, was measured by a gravimetric method and compared with the data predicted using the conductor like screening model for realistic solvation (COSMO-RS) method. The results show that the solubilities of coenzyme Q10 in the above solvents increase with temperature. The temperature dependences of predicted solubilities were consistent with the experimental data. The experimental data were correlated with the Apelblat equation. At the same temperature, the order of increasing solubility is ethyl acetate > n-hexane > 1-butanol > 1-propanol > 2-propanol > ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lenaz, G., Fato, R., Formiggini, G., Genova, M.L.: The role of coenzyme Q in mitochondrial electron transport. Mitochondrion 7(Supplement), S8–S33 (2007)

    Article  CAS  Google Scholar 

  2. Crane, F.L.: Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20, 591–598 (2001)

    CAS  Google Scholar 

  3. Zhang, J., Hu, J.W., Wang, J.L., Chen, L.Z.: Solubility of 1,3,3-trinitroazetidine in ethanol+water systems from (293.15 to 323.15 K). J. Solution Chem. 40, 703–708 (2011)

    Article  CAS  Google Scholar 

  4. Jing, D.D., Wang, J.K., Wang, Y.L.: Solubility of penicillin sulfoxide in different solvents. J. Chem. Eng. Data 55, 508–509 (2010)

    Article  CAS  Google Scholar 

  5. Klamt, A.: COSMO-RS, From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier B.V, Amsterdam (2005)

    Google Scholar 

  6. Schröder, B., Santos, L.M.N.B.F., Marrucho, I.M., Coutinho, J.A.P.: Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS. Fluid Phase Equil. 289, 140–147 (2010)

    Article  Google Scholar 

  7. ADF2010, Trial version, Scientific Computing & Modelling NV, Theoretical Chemistry. Vrije Universiteit, Amsterdam, Netherlands (2011)

  8. te Velde, G., Bickelhaupt, F.M., van Gisbergen, S.J.A., Guerra, C.F., Baerends, E.J., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  9. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03, Re Vision C.01. Gaussian, Inc., Pittsburgh (2004)

  10. Schäfer, A., Huber, C., Ahlrichs, R.: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994)

    Article  Google Scholar 

  11. Pye, C.C., Ziegler, T., van Lenthe, E., Louwen, J.N.: An implementation of the conductor-like screeningmodel of solvation within the Amsterdam density functional package. Part II. COSMO for real solvents. Can. J. Chem. 87, 790–797 (2009)

    Article  CAS  Google Scholar 

  12. Zhou, H.F., Yue, Y., Liu, G.L., Li, Y., Zhang, J., Yan, Z.M., Duan, M.X.: Characterisation and skin distribution of lecithin-based coenzyme Q10-loaded lipid nanocapsules. Nanoscale Res. Lett. 5, 1561–1569 (2010)

    Article  CAS  Google Scholar 

  13. Cui, P.L., Yin, Q.X., Gong, J.B.: Solubility of candesartan cilexetil in different solvents at various temperatures. J. Chem. Eng. Data 56, 658–660 (2011)

    Article  CAS  Google Scholar 

  14. Zhang, X.W., Yin, Q.X., Gong, J.B., Liu, Z.K.: Solubility of 5-amino-N,N’-bis(2,3-dihydroxypropyl)-2,4,6-triiodobenzene-1,3-dicarboxamide in ethanol plus water mixtures. J. Chem. Eng. Data 55, 2355–2357 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No.20836005, 21003077 and 21176184) and the Open Project of Key Laboratory Advanced Energy Materials Chemistry (Nankai University) (KLAEMC-OP201201). The ADF program (trial version) was provided by Beijing Hongcam Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Sun, YH., Li, ZY. et al. Solubility Measurements and Prediction of Coenzyme Q10 Solubility in Different Solvent Systems. J Solution Chem 42, 764–771 (2013). https://doi.org/10.1007/s10953-013-9998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9998-5

Keywords

Navigation