Skip to main content
Log in

Microcalorimetry studies on the antimicrobial actions of volatile oil of dry ginger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The rate of heat output is one of the suitable measurements of metabolic activity of the organism. In this article, microcalorimetry was first applied to study the effect of volatile oil of dry ginger (ginger oil) on Escherichia coli and Staphylococcus aureus growth. The power–time curves were plotted with a TAM air isothermal microcalorimeter. The parameters such as the growth rate constant μ, the peak-time T p, inhibitory ratio I, and half-inhibitory concentration IC50 were calculated. From the data, the relationships between μ and the concentration of ginger oil c were established. The results revealed that the μ of E. coli and S. aureus both gradually declined with the increase of the c, there were linear relationships between μ and c, and ginger oil had stronger inhibitory effect on S. aureus than on E. coli. Results obtained from our study strongly suggest that microcalorimetry is an ideal method to investigate the effect of drug on microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 2007;102:764–70. doi:10.1016/j.foodchem/2006/06/023.

    Article  CAS  Google Scholar 

  2. Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthr Rheum. 2001;44:2531–8.

    Article  CAS  Google Scholar 

  3. Srivastava KC, Mustafa T. Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med Hypotheses. 1992;39:342–8.

    Article  CAS  Google Scholar 

  4. Yang ZN, Luo SQ, Peng QC, Zhao C, Yu ZW. GC–MS analysis of the essential oil of coral ginger (Zingiber corallinum Hance) rhizome obtained by supercritical fluid extraction and steam distillation extraction. Chromatographia. 2009;69:785–90. doi:10.1365/s10337-009-0971-9.

    Article  CAS  Google Scholar 

  5. Zhou HL, Deng YM, Xie QM. The modulatory effects of the volatile oil of ginger on the cellular immune response in vitro and in vivo in mice. J Ethnopharmacol. 2006;105:301–5. doi:10.1016/j.jep/2005/10/022.

    Article  CAS  Google Scholar 

  6. Yip YB, Tamb ACY. An experimental study on the effectiveness of massage with aromatic ginger and orange essential oil for moderate-to-severe knee pain among the elderly in Hong Kong. Complement Ther Med. 2008;16:131–8. doi:10.1016/j.ctim/2007/12/003.

    Article  Google Scholar 

  7. Yi LT, Xu Q, Li YC, Yang L, Kong LD. Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:616–24. doi:10.1016/j.pnpbp/2009/03/001.

    Article  Google Scholar 

  8. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94:223–53. doi:10.1016/j.ijfoodmicro/2004/03/022.

    Article  CAS  Google Scholar 

  9. Liu Y, Zhang WM, Shan CY, Liu Y, Jiang HF. Study on the antimicrobial activity of ginger essential oil. Sci Technol Food Ind. 2008;29:88–90 (in Chinese).

    CAS  Google Scholar 

  10. Yang LN, Xu F, Sun LX, Zhao ZB, Song CG. Microcalorimetric studies on the antimicrobial actions of different cephalosporins. J Therm Anal Calorim. 2008;93:417–21.

    Article  CAS  Google Scholar 

  11. Critter SAM, Freitas SS, Airoldi C. Calorimetry versus respirometry for the monitoring of microbial activity in a tropical soil. Appl Soil Ecol. 2001;18:217–27.

    Article  Google Scholar 

  12. Yan D, Jin C, Xiao XH, Dong XP. Investigation of the effect of berberines alkaloids in Coptis chinensis Franch on Bacillus shigae growth by microcalorimetry. Sci China Ser B. 2007;50:638–42.

    Article  CAS  Google Scholar 

  13. Wadsö I. Isothermal microcalorimetry near ambient temperature: an overview and discussion 1. Thermochim Acta. 1997;294:1–11.

    Article  Google Scholar 

  14. Wadsö I. Isothermal microcalorimetry: current problems and prospects. J Therm Anal Calorim. 2001;64:75–84.

    Article  Google Scholar 

  15. Wadsö I. Microcalorimetric techniques for characterization of living cellular systems. Will there be any important practical applications? Thermochim Acta. 1995;269/270:337–50.

    Article  Google Scholar 

  16. Wu YW, Gao WY, Xiao XH, Liu Y. Calorimetric investigation of the effect of hydroxyanthraquinones in Rheum officinale Baill on Staphylococcus aureus growth. Thermochim Acta. 2005;429:167–70.

    Article  CAS  Google Scholar 

  17. Zhang HL, Yu XF, Li XX, Pan XR. A study of promotive and fungistatic actions of steroidal saponin by microcalorimetric method. Thermochim Acta. 2004;416:71–4.

    Article  CAS  Google Scholar 

  18. Li X, Liu Y, Wu J, Qu SS. The effect of the selenomorpholine derivatives on the growth of Staphylococcus aureus studied by microcalorimetry. Thermochim Acta. 2001;375:109–13.

    Article  CAS  Google Scholar 

  19. Wadsö I. Isothermal microcalorimetry in applied biology. Thermochim Acta. 2002;394:305–11.

    Article  Google Scholar 

  20. Kong WJ, Zhao YL, Shan LM, Xiao XH, Guo WJ. Microcalorimetric studies of the action on four organic acids in Radix isatidis on the growth of microorganisms. Sheng Wu Gong Cheng Xue Bao. 2008;24:646–50 (in Chinese).

    CAS  Google Scholar 

  21. Xie CL, Tang HK, Song ZH, Qu SS, Liao YT, Liu HS. Determination of thermograms of bacterial growth. Wei Sheng Wu Xue Bao. 1989;29:149–51 (in Chinese).

    CAS  Google Scholar 

  22. Xu XJ, Xue Z, Qi ZD, Hou AX, Li CH, Liu Y. Antibacterial activities of manganese(II) ebselen-porphyrin conjugate and its free components on Staphylococcus aureus investigated by microcalorimetry. Thermochim Acta. 2008;476:33–8. doi:10.1016/j.tca/2008/07/007.

    Article  CAS  Google Scholar 

  23. Li X, Liu Y, Wu J, Liang HG, Qu SS. Microcalorimetric study of Staphylococcus aureus growth affected by selenium compounds. Thermochim Acta. 2002;387:57–61.

    Article  CAS  Google Scholar 

  24. Yu Y, Yu M, Zhang HL. Microcalorimetric study of volatile oil on Escherichia coli. J Qufu Norm Univ. 2008;34:85–7 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of Natural Science Foundation of Shan-dong Province (No. Y2007C141) and award program for outstanding young scientists of Shan-dong Province (No. 2007BS02002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guimei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Shao, W. & Lin, G. Microcalorimetry studies on the antimicrobial actions of volatile oil of dry ginger. J Therm Anal Calorim 107, 831–835 (2012). https://doi.org/10.1007/s10973-011-1589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1589-3

Keywords

Navigation