Skip to main content
Log in

Thermal analysis of contemporary glass-ionomer restorative materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal characteristics of four conventional glass-ionomer cement (GIC) dental restorative products as well as five resin-modified glass-ionomer (RMGI) materials over 1-year of storage were investigated. All materials were prepared following manufacturer’s recommendations and placed into 40 μL aluminum differential scanning calorimeter (DSC) crucibles. Samples (n = 5) were stored at 37 °C and 98 ± 2 % humidity until their appointed time of evaluation at which they were first subjected to specific heat analysis using DSC over 20–60 °C that was immediately followed by a 37–600 °C thermal scan at 10 °C min−1. Samples were evaluated immediately after preparation, at 24 h, 1 week, 1 month, as well as at 3, 6, 9, and 12 months. Mean thermal results were compared with analysis of variance and Scheffe post-hoc testing (p = 0.05). All materials absorbed water during storage. Conventional GIC materials demonstrated increased polyalkenoate polymer maturity over the 12-month storage. The paste–paste RMGI materials, absorbed more water during storage and had increased specific heat values compared to powder–liquid RMGI materials. Of the RMGI materials investigated, only two materials demonstrated evidence of a continuing polyalkenoate matrix maturity that was within the limitations of the technology used, indicating the resin component in some newer formulations of RMGI restorative materials may severely limit the polyalkenoate reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wilson AD, Kent BE. The glass-ionomer cement, a new translucent dental filling material. J Appl Chem Biotechnol. 1971;21:313.

    Article  CAS  Google Scholar 

  2. Wilson AD. Developments in glass-ionomer cements. Int J Prosthodont. 1989;2:438–46.

    CAS  Google Scholar 

  3. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19:485–94.

    Article  CAS  Google Scholar 

  4. Prosser HJ, Powis DR, Brant P, Wilson AD. Characterization of glass-ionomer cements. 7. The physical properties of current materials. J Dent. 1984;12:231–40.

    Article  CAS  Google Scholar 

  5. McLean JW, Gasser O. Glass-cermet cements. Quintessence Int. 1985;16:333–43.

    CAS  Google Scholar 

  6. Simmons JJ. The miracle mixture: glass-ionomer and alloy powder. Texas Dent J. 1983;100:6–12.

    CAS  Google Scholar 

  7. Williams JA, Billington RW, Pearson GJ. The comparative strengths of commercial glass-ionomer cements with and without metal additions. Br Dent J. 1992;172:279–82.

    Article  CAS  Google Scholar 

  8. Guggenberger R, May R, Stefan KP. New trends in glass-ionomer chemistry. Biomaterials. 1998;19:479–83.

    Article  CAS  Google Scholar 

  9. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer cements and related materials. Quintessence Int. 1994;25:587–9.

    CAS  Google Scholar 

  10. Sidhu SK, Watson TF. Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am J Dent. 1995;8:59–67.

    CAS  Google Scholar 

  11. Davidson CL, Mjör IA. Advances in glass-ionomer cements. Chicago: Quintessence Publishing Co., Inc.; 1999.

    Google Scholar 

  12. Wilson AD. Resin-modified glass-ionomers. Int J Prosthodont. 1990;3:425–9.

    CAS  Google Scholar 

  13. de Gee AJ, Leloup G, Werner A, Vreven J, Davidson CL. Structural integrity of resin-modified glass ionomers as affected by the delay or omission of light activation. J Dent Res. 1998;77:1658–63.

    Article  Google Scholar 

  14. Hammesfahr PD (1994) Developments in resionomer systems. In: Hunt P, (ed) Glass ionomers: the next generation. Proceedings of the 2nd International Symposium on Glass Ionomers, June 1994. International Symposia in Dentistry, PC. Philadelphia, pp. 47–55.

  15. Eliades G, Palaghias G. In vitro characterization of visible light-cured glass ionomers liners. Dent Mater. 1993;9:198–203.

    Article  CAS  Google Scholar 

  16. Culbertson BM. Glass-ionomer dental restoratives. Prog Polym Sci. 2001;26:577–604.

    Article  CAS  Google Scholar 

  17. Fuji II LC MSDS. 2000 http://www.gcamerica.com. Accessed 25 Feb 2012.

  18. Vitremer and Photac-Fil Quick MSDS. 2012. http://www3.3m.com/search/ww/en001/msdssearchform.do. Accessed 25 Feb 2012.

  19. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, Peumans M, Lambrechts P, Van Meerbeek B. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater. 2009;25:1347–57.

    Article  CAS  Google Scholar 

  20. Anstice HM, Nicholson JW. Studies in the setting of polyelectrolyte materials. Part II: the effect of organic compounds on a glass poly(alkenoate) cement. J Mater Sci Mater Med. 1994;5:299–302.

    Article  CAS  Google Scholar 

  21. Nicholson JW, Anstice HM. The physical chemistry of light-curable glass-ionomers. J Mater Sci Mater Med. 1994;5:119–22.

    Article  CAS  Google Scholar 

  22. Wan ACA, Yap AUJ, Hastings GW. Acid-base complex reactions in resin-modified and conventional glass ionomer cements. J Biomed Mater Res. 1999;48:700–4.

    Article  CAS  Google Scholar 

  23. Young AM. FTIR investigation of polymerisation and polyacid neutralisation kinetics in resin-modified glass-ionomer dental cements. Biomaterials. 2002;23:3289–95.

    Article  CAS  Google Scholar 

  24. Young AM, Rafeeka SA, Howlett JA. FTIR investigation of monomer polymerisation and polyacid neutralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials. 2004;25:823–33.

    Article  CAS  Google Scholar 

  25. Li J, von Beetzen M, Sundström F. Strength and setting behavior of resin-modified glass ionomers cements. Acta Odontol Scand. 1995;53:311–7.

    Article  CAS  Google Scholar 

  26. Kakaboura A, Eliades G, Palaghias G. An FTIR study on the setting mechanism of resin-modified glass ionomer restoratives. Dent Mater. 1996;12:173–8.

    Article  CAS  Google Scholar 

  27. Young AM, Sherpa A, Pearson G, Schottlander B, Waters DN. Use of Raman spectroscopy in the characterisation of the acid-base reaction in glass-ionomer cements. Biomaterials. 2000;21:1971–9.

    Article  CAS  Google Scholar 

  28. Chedella SC, Berzins DW. A differential scanning calorimetry study of the setting reaction of MTA. Int Endod J. 2010;43:509–18.

    Article  CAS  Google Scholar 

  29. Cadenaro M, Navarra CO, Antoniolli F, Mazzoni A, Di Lenarda R, Rueggeberg FA, Breschi L. The effect of curing mode on extent of polymerization and microhardness of dual-cured, self-adhesive resin cements. Am J Dent. 2010;23:14–8.

    Google Scholar 

  30. Pfeifer CS, Ferracane JL, Sakaguchi RL, Braga RR. Photoinitiator content in restorative composites: influence on degree of conversion, reaction kinetics, volumetric shrinkage and polymerization stress. Am J Dent. 2009;22:206–10.

    Google Scholar 

  31. Urban VM, Machado AL, Alves MO, Maciel AP, Vergani CE, Leite ER. Glass transition temperature of hard chairside reline materials after post-polymerisation treatments. Gerodontology. 2010;27:230–5.

    Article  Google Scholar 

  32. De Santis R, Gloria A, Sano H, Amendola E, Prisco D, Mangani F, Rengo S, Ambrosio L, Nicolais L. Effect of light curing and dark reaction phases on the thermomechanical properties of a Bis-GMA based dental restorative material. J Appl Biomater Biomech. 2009;7:132–40.

    Google Scholar 

  33. Ferrante M, Petrini M, Trentini P, Spoto G. Evaluation of composites light-curing at different times and distances of irradiation. J Therm Anal Calorim. 2012;107:757–61.

    Article  CAS  Google Scholar 

  34. Khalil SKH, Atkins EDT. Investigation of glass-ionomer cements using differential scanning calorimetry. J Mater Sci Mater Med. 1998;9:529–33.

    Article  CAS  Google Scholar 

  35. Berzins DW, Abey S, Costache MC, Wilkie CA, Roberts HW. Resin-modified glass-ionomer setting reaction competition. J Dent Res. 2010;89:82–6.

    Article  CAS  Google Scholar 

  36. Micelli F, Maffezolli A, Terzi R, Luprano VA. Characterization of the kinetic behavior of resin modified glass-ionomer cements by DSC, TMA and ultrasonic wave propagation. J Mater Sci Mater Med. 2001;12:151–6.

    Article  CAS  Google Scholar 

  37. Nicholson JW, Czarnecka B. Kinetic studies of water uptake and loss in glass-ionomer cements. J Mater Sci Mater Med. 2008;19:1723–7.

    Article  CAS  Google Scholar 

  38. Small ICB, Watson TF, Chadwick AV, Sidhu SK. Water sorption in resin-modified glass-ionomer cements: an in vitro comparison with other materials. Biomaterials. 1998;19:545–50.

    Article  CAS  Google Scholar 

  39. Akashi A, Matsuya Y, Unemori M, Akamine A. The relationship between water absorption characteristics and the mechanical strength of resin-modified glass-ionomer cements in long-term water storage. Biomaterials. 1999;20:1573–8.

    Article  CAS  Google Scholar 

  40. Sidhu SK, Sherriff M, Watson TF. The effects of maturity and dehydration shrinkage on resin-modified glass-ionomer restorations. J Dent Res. 1997;76:1495–501.

    Article  CAS  Google Scholar 

  41. Nicholson JW, Anstice HM, McLean JW. A preliminary report on the effect of storage in water on the properties of commercial light-cured glass-ionomer cements. Br Dent J. 1992;173:98–101.

    Article  CAS  Google Scholar 

  42. Sidhu SK, Pilecki P, Sherriff M, Watson TF. Crack closure on rehydration of glass ionomer materials. Eur J Oral Sci. 2004;112:465–9.

    Article  CAS  Google Scholar 

  43. Brady JE, Senese F. Chemistry: the study of matter and its changes. 5th ed. New York: Wiley; 2007. p. 557–62.

    Google Scholar 

  44. Sorai, M. (ed). Comprehensive handbook of calorimetry and thermal analysis. West Sussex: Wiley; 2004. p. 224–5.

  45. Kanchanavasita W, Anstice HM, Pearson GJ. Water sorption characteristics of resin-modified glass-ionomer cements. Biomaterials. 1997;18:343–9.

    Article  CAS  Google Scholar 

  46. McNeill IC, Sadeghi SMT. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 1—poly(acrylic acid). Polym Degrad Stab. 1990;29:233–46.

    Article  CAS  Google Scholar 

  47. McNeil IC, Sadeghi SMT. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 3—magnesium and calcium salts. Polym Degrad Stab. 1990;30:267–82.

    Article  Google Scholar 

  48. Nicholson JW, Wilson AD. Thermal behaviour of films of partially neutralized poly(acrylic acid). 1: influence of metal ions. Br Polym J. 1987;19:67–72.

    Article  CAS  Google Scholar 

  49. Ferrante M, Petrini M, Trentini P, Ciavarelli L, Spoto G. Thermal analysis of light curing composites. J Therm Anal Calorim. 2010;102:107–11.

    Article  CAS  Google Scholar 

  50. Demirelli K, Coşkun M, Kaya E. A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polym Degrad Stab. 2001;72:75–80.

    Article  CAS  Google Scholar 

  51. Miyazaki CL, Medeiros IS, Matos JR, Filho LER. Thermal characterization of dental composites by TG/DTG and DSC. J Therm Anal Calorim. 2010;102:361–7.

    Article  CAS  Google Scholar 

  52. Rojas SS, Frigo GJM, Bernardi MIB, Rastelli ANS, Hernandes AC, Bagnato VS. Thermal and structural properties of commercial dental resins light-cured with blue emitting diodes (LEDs). J Therm Anal Calorim. 2010;99:263–8.

    Article  CAS  Google Scholar 

  53. Almeida CC, Mothé CG. Characterization of dental composites by thermal analysis, infrared spectroscopy and scanning electron microscopy. J Therm Anal Calorim. 2009;97:585–9.

    Article  CAS  Google Scholar 

  54. Bernardi MIB, Rojas SS, Andreeta MRB, Rastelli ANS, Hernandes AC, Bagnato VS. Thermal analysis and structural investigation of different dental composite resins. J Therm Anal Calorim. 2008;94:791–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the generosity of the manufacturers who supplied the glass-ionomer materials for this study.

Disclaimer

The authors have not financial interest in any of the materials used in this evaluation and any use does not imply endorsement. Any opinions expressed in this work represent those of the authors only and do not represent the official opinions of the United States Air Force, Department of Defense, or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Roberts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12 kb)

Supplementary material 2 (PDF 12 kb)

Caption ESM_3: Representative Thermal Scans for Fuji IX GP. (PDF 45 kb)

Caption ESM_4: Representative Thermal Scans for Fuji IX GP EXTRA (PDF 43 kb)

Caption ESM_5: Representative Thermal Scans for Ketac Molar Quick. (PDF 42 kb)

Caption ESM_6: Representative Thermal Scans for Fuji II LC. (PDF 37 kb)

Caption ESM_7: Representative Thermal Scans for Vitremer. (PDF 38 kb)

Caption ESM_8: Representative Thermal Scans for Photac Fill Quick. (PDF 40 kb)

Caption ESM_9: Representative Thermal Scans for Fuji Filling LC (PDF 41 kb)

Caption ESM_10: Representative Thermal Scans for Ketac Nano (PDF 40 kb)

Supplementary material 11 (PDF 12 kb)

Supplementary material 12 (PDF 12 kb)

Supplementary material 13 (PDF 12 kb)

Supplementary material 14 (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, H., Berzins, D. Thermal analysis of contemporary glass-ionomer restorative materials. J Therm Anal Calorim 115, 2099–2106 (2014). https://doi.org/10.1007/s10973-013-3428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3428-1

Keywords

Navigation