Skip to main content

Advertisement

Log in

Dysregulation of sodium channel gating in critical illness myopathy

  • Original Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Critical illness myopathy (CIM) is the most common caused of acquired weakness in critically ill patients. While atrophy of muscle fibers causes weakness, the primary cause of acute weakness is loss of muscle excitability. Studies in an animal model of CIM suggest that both depolarization of the resting potential and a hyperpolarized shift in the voltage dependence of sodium channel gating combine to cause inexcitability. In active adult skeletal muscle the only sodium channel isoform expressed is Nav1.4. In the animal model of CIM the Nav1.5 sodium channel isoform is upregulated, but the majority of sodium current is still carried by Nav1.4 sodium channels. Experiments using toxins to selectively bock the Nav1.4 isoform demonstrated that the cause of the hyperpolarized shift in sodium channel inactivation is a hyperpolarized shift in inactivation of the Nav1.4 isoform. These data suggest that CIM represents a new type of ion channel disease in which altered gating of sodium channels is due to improper regulation of the channels rather than mutation of channels or changes in isoform expression. The hypothesis that dysregulation of sodium channel gating underlies inexcitability of skeletal muscle in CIM raises the possibility that there maybe dysregulation of sodium channel gating in other tissues in critically ill patients. We propose that there is a syndrome of reduced electrical excitability in critically ill patients that affects skeletal muscle, peripheral nerve, the heart and central nervous system. This syndrome manifests as CIM, critical illness polyneuropathy, reduced cardiac contractility and septic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque EX, McIsaac RJ (1970) Fast and slow mammalian muscles after denervation. Exp Neurol 26:183–202

    Article  PubMed  CAS  Google Scholar 

  • Bednarik J, Lukas Z, Vondracek P (2003) Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med 29:1505–1514

    Article  PubMed  Google Scholar 

  • Bednarik J, Vondracek P, Dusek L, Moravcova E, Cundrle I (2005) Risk factors for critical illness polyneuromyopathy. J Neurol 252:343–351

    Article  PubMed  CAS  Google Scholar 

  • Bendahhou S, Cummins TR, Potts JF, Tong J, Agnew WS (1995) Serine–1321–independent regulation of the mu 1 adult skeletal muscle Na+ channel by protein kinase C. Proc Nat Acad Sci USA 92:12003–12007

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bennett E, Urcan MS, Tinkle SS, Koszowski AG, Levinson SR (1997) Contribution of sialic acid to the voltage dependence of sodium channel gating. A possible electrostatic mechanism. J Gen Physiol 109:327–343

    Article  PubMed  CAS  Google Scholar 

  • Bennett ES (2002) Isoform-specific effects of sialic acid on voltage-dependent Na  + channel gating: functional sialic acids are localized to the S5–S6 loop of domain I. J Physiol 538:675–690

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bird SJ, Rich MM (2002) Critical illness myopathy and polyneuropathy. Curr Neurol Neurosci Rep 2:527–533

    PubMed  Google Scholar 

  • Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle Nerve 32:140–163

    Article  PubMed  Google Scholar 

  • De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, Cerf C, Renaud E, Mesrati F, Carlet J, Raphael JC, Outin H, Bastuji-Garin S (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. Jama 288:2859–2867

    Article  PubMed  Google Scholar 

  • Filatov GN, Rich MM (2004) Hyperpolarized shifts in the voltage dependence of fast inactivation of Nav1.4 and Nav1.5 in a rat model of critical illness myopathy. J Physiol 559:813–820

    PubMed  CAS  Google Scholar 

  • Friedrich O (2006) Critical illness myopathy: what is happening? Curr Opin Nutr Metab Care in press

  • Friedrich O, Fink RH, Hund E (2005) Understanding critical illness myopathy: approaching the pathomechanism. J Nutr 135:1813S–1817S

    PubMed  CAS  Google Scholar 

  • Friedrich O, Hund E, Weber C, Hacke W, Fink RH (2004) Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle. J Neurol 251:53–65

    Article  PubMed  CAS  Google Scholar 

  • Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693

    Article  PubMed  Google Scholar 

  • Hudson LD, Lee CM (2003) Neuromuscular sequelae of critical illness. N Engl J Med 348:745–747

    Article  PubMed  Google Scholar 

  • Lacomis D, Petrella JT, Giuliani MJ (1998) Causes of neuromuscular weakness in the intensive care unit: a study of ninety-two patients. Muscle Nerve 21:610–617

    Article  PubMed  CAS  Google Scholar 

  • Lacomis D, Zochodne DW, Bird SJ (2000) Critical illness myopathy. Muscle Nerve 23:1785–1788

    Article  PubMed  CAS  Google Scholar 

  • Lacomis D, Giuliani MJ, Van Cott A, Kramer DJ (1996) Acute myopathy of intensive care: clinical, electromyographic, and pathological aspects [see comments] Ann Neurol 40:645–654

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Li X, Edstrom L, Eriksson LI, Zackrisson H, Argentini C, Schiaffino S (2000) Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med 28:34–45

    Article  PubMed  CAS  Google Scholar 

  • Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G, Tonin P, De Maria G, Antonini L, Rizzuto N, Candiani A (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic H, Tomanek RJ (1977) Potassium and chloride conductances in normal and denervated rat muscles. Am J Physiol 232:C109–114

    PubMed  CAS  Google Scholar 

  • MacFarlane IA, Rosenthal FD (1977) Severe myopathy after status asthmaticus [letter]. Lancet 2:615

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Carpenter S, Holland P, Karpati G (1992) Loss and renewal of thick myofilaments in glucocorticoid-treated rat soleus after denervation and reinnervation. Muscle Nerve 15:1290–1298

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA (1994) Modulation of cardiac Na+ channels expressed in a mammalian cell line and in ventricular myocytes by protein kinase C. Proc Natl Acad Sci USA 91:3289–3293

    Article  PubMed  CAS  ADS  Google Scholar 

  • Rich MM, Pinter MJ (2001) Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann Neurol 50:26–33

    Article  PubMed  CAS  Google Scholar 

  • Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547:555–566

    Article  PubMed  CAS  Google Scholar 

  • Rich MM, Kraner SD, Barchi RL (1999) Altered Gene Expression in Steroid-Treated Denervated Muscle. Neurobiol Dis 6:515–522

    Article  PubMed  CAS  Google Scholar 

  • Rich MM, Pinter MJ, Kraner SD, Barchi RL (1998) Loss of electrical excitability in an animal model of acute quadriplegic myopathy [see comments]. Ann Neurol 43:171– 179

    Article  PubMed  CAS  Google Scholar 

  • Rich MM, McGarvey ML, Teener JW, Frame LH (2002) ECG Changes during Septic Shock. Cardiology 97:187–196

    Google Scholar 

  • Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ (1996) Muscle is electrically inexcitable in acute quadriplegic myopathy [see comments]. Neurology 46:731–736

    PubMed  CAS  Google Scholar 

  • Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW (1997) Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 20:665–673

    Article  PubMed  CAS  Google Scholar 

  • Rouleau G, Karpati G, Carpenter S, Soza M, Prescott S, Holland P (1987) Glucocorticoid excess induces preferential depletion of myosin in denervated skeletal muscle fibers. Muscle Nerve 10:428–438

    Article  PubMed  CAS  Google Scholar 

  • Ruff RL, Lennon VA (1998) End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis. Ann Neurol 43:370–379

    Article  PubMed  CAS  Google Scholar 

  • Ruff RL, Simoncini L, Stuhmer W (1987) Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol 383:339–348

    PubMed  CAS  Google Scholar 

  • Sellin LC, Thesleff S (1980) Alterations in membrane electrical properties during long-term denervation of rat skeletal muscles. Acta Physiologica Scandinavica 108:243–246

    Article  PubMed  CAS  Google Scholar 

  • Teener JW, Rich MM, Bird SJ (1999) Other causes of weakness in the intensive care unit. Butterworth-Heinemann, Woburn, MA

    Google Scholar 

  • Trojaborg W, Weimer LH, Hays AP (2001) Electrophysiologic studies in critical illness associated weakness: myopathy or neuropathy–a reappraisal. Clin Neurophysiol 112:1586–1593

    Article  PubMed  CAS  Google Scholar 

  • Wang DW, George AL Jr, Bennett PB (1996) Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J 70:238–245

    PubMed  CAS  Google Scholar 

  • Yang JS, Sladky JT, Kallen RG, Barchi RL (1991) TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron 7:421–427

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Bennett PB, Makita N, George AL, Barchi RL (1993) Expression of the sodium channel beta 1 subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive alpha subunit isoform. Neuron 11:915–922

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hartmann HA, Satin J (1999) Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 171:195–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant NS040826 (M. M. Rich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Rich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teener, J.W., Rich, M.M. Dysregulation of sodium channel gating in critical illness myopathy. J Muscle Res Cell Motil 27, 291–296 (2006). https://doi.org/10.1007/s10974-006-9074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9074-5

Keywords

Navigation