Skip to main content
Log in

Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom?

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The thick filament protein myosin-binding protein-C shows a highly modular architecture, with the C-terminal region responsible for tethering to the myosin and titin backbone of the thick filament. The N-terminal region shows the most significant differences between cardiac and skeletal muscle isogenes: an entire Ig-domain (C0) is added, together with highly regulated phosphorylation sites between Ig domains C1 and C2. These structural and functional differences at the N-terminus reflect important functions in cardiac muscle regulation in health and disease. Alternative interactions of this part of MyBP-C with the head–tail (S1–S2) junction of myosin or to actin filaments have been proposed, but with conflicting experimental evidence. The regulation of myosin or actin interaction by phosphorylation of the cardiac MyBP-C N-terminus may play an additional role in length-dependent contraction regulation. We discuss here the evidence for these proposed interactions, considering the required properties of MyBP-C, the way in which they may be regulated in muscle contraction and the way they might be related to heart disease. We also attempt to shed some light on experimental pitfalls and future strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ababou A, Pfuhl M, Gautel M (2007) Dissecting the N-terminal myosin binding site of human cardiac myosin-binding protein C. J Biol Chem 282:9204–9215

    Article  PubMed  CAS  Google Scholar 

  • Ababou A, Rostkova E, Mistry S, Le Masurier C, Gautel M, Pfuhl M (2008) Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1. J Mol Biol 384:615–630

    Article  PubMed  CAS  Google Scholar 

  • Ackermann MA, Hu LY, Bowman AL, Bloch RJ, Kontrogianni-Konstantopoulos A (2009) Obscurin interacts with a novel isoform of MyBP-C slow at the periphery of the sarcomeric M-band and regulates thick filament assembly. Mol Biol Cell 20:2963–2978

    Article  PubMed  CAS  Google Scholar 

  • Bahrudin U, Morikawa K, Takeuchi A, Kurata Y, Miake J, Mizuta E, Adachi K, Higaki K, Yamamoto Y, Shirayoshi Y, Yoshida A, Kato M, Yamamoto K, Nanba E, Morisaki H, Morisaki T, Matsuoka S, Ninomiya H, Hisatome I (2011) Impairment of ubiquitin-proteasome system by E334K cMyBPC modifies channel proteins, leading to electrophysiological dysfunction. J Mol Biol 413:857–878

    Article  PubMed  CAS  Google Scholar 

  • Bardswell SC, Cuello F, Kentish JC, Avkiran M (2012) cMyBP-C as a promiscuous substrate: phosphorylation by non-PKA kinases and its potential significance. J Muscle Res Cell Motil. doi:10.1007/s10974-011-9276-3

    Google Scholar 

  • Baumann BA, Taylor DW, Huang Z, Tama F, Fagnant PM, Trybus KM, Taylor KA (2011) Phosphorylated smooth muscle heavy meromyosin shows an open conformation linked to activation. J Mol Biol 415:274–287

    Article  PubMed  CAS  Google Scholar 

  • Bennett P, Craig R, Starr R, Offer G (1986) The ultrastructural localization of C-protein, X-protein and H-protein in rabbit muscle. J Muscle Res Cell Motil 7:550–567

    Article  PubMed  CAS  Google Scholar 

  • Bennett PM, Fürst DO, Gautel M (1999) The C-protein (myosin binding protein C) family: regulators of contraction and sarcomere formation? Rev Physiol Biochem Pharmacol 138:203–234

    Article  PubMed  CAS  Google Scholar 

  • Berger EM, Cox G, Weber L, Kenney JS (1981) Actin acetylation in Drosophila tissue culture cells. Biochem Genet 19:321–331

    Article  PubMed  CAS  Google Scholar 

  • Blankenfeldt W, Thoma NH, Wray JS, Gautel M, Schlichting I (2006) Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment. Proc Natl Acad Sci USA 103:17713–17717

    Article  PubMed  CAS  Google Scholar 

  • Bosch-Comas A, Lindsten K, Gonzalez-Duarte R, Masucci MG, Marfany G (2006) The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins. Cell Mol Life Sci 63:723–734

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Yang Y, Reshetnikova L, Gourinath S, Suveges D, Kardos J, Hobor F, Reutzel R, Nyitray L, Cohen C (2008) An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. J Mol Biol 375:1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Calaghan SC, Trinick J, Knight PJ, White E (2000) A role for C-protein in the regulation of contraction and intracellular Ca2+ in intact rat ventricular myocytes. J Physiol 528:151–156

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty T, Yengo C, Baldacchino C, Chen LQ, Sweeney HL, Selvin PR (2003) Does the S2 rod of myosin II uncoil upon two-headed binding to actin? A leucine-zippered HMM study. Biochemistry 42:12886–12892

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095

    Article  PubMed  CAS  Google Scholar 

  • Colson BA, Bekyarova T, Fitzsimons DP, Irving TC, Moss RL (2007) Radial displacement of myosin cross-bridges in mouse myocardium due to ablation of myosin binding protein-C. J Mol Biol 367:36–41

    Article  PubMed  CAS  Google Scholar 

  • Colson BA, Locher MR, Bekyarova T, Patel JR, Fitzsimons DP, Irving TC, Moss RL (2010) Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development. J Physiol 588:981–993

    Article  PubMed  CAS  Google Scholar 

  • de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48:851–858

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE, Shimizu T, Reinach FC, Fischman DA (1984) Localization of C-protein isoforms in chicken skeletal muscle: ultrastructural detection using monoclonal antibodies. J Cell Biol 98:1514–1522

    Article  PubMed  CAS  Google Scholar 

  • Farman GP, Miller MS, Reedy MC, Soto-Adames FN, Vigoreaux JO, Maughan DW, Irving TC (2009) Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle. J Struct Biol 168:240–249

    Article  PubMed  CAS  Google Scholar 

  • Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, de Tombe PP (2011) Myosin head orientation: a structural determinant for the Frank–Starling relationship. Am J Physiol Heart Circ Physiol 300:H2155–H2160

    Article  PubMed  CAS  Google Scholar 

  • Flavigny J, Souchet M, Sebillon P, Berrebi-Bertrand I, Hainque B, Mallet A, Bril A, Schwartz K, Carrier L (1999) COOH-terminal truncated cardiac myosin-binding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or incorporation in fetal rat cardiomyocytes. J Mol Biol 294:443–456

    Article  PubMed  CAS  Google Scholar 

  • Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckmann JS, Carrier L (1998) Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development. Circ Res 82:130–133

    PubMed  CAS  Google Scholar 

  • Freiburg A, Gautel M (1996) A molecular map of the interactions of titin and myosin-binding protein C: implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323

    Article  PubMed  CAS  Google Scholar 

  • Fürst DO, Nave R, Osborn M, Weber K (1989) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins; an immunoelectron microscopical study on myofibrils. J Cell Biol 94:119–125

    Google Scholar 

  • Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J 14:1952–1960

    PubMed  CAS  Google Scholar 

  • Gautel M, Fürst DO, Cocco A, Schiaffino S (1998) Isoform transitions of the myosin-binding protein C family in developing human and mouse muscles: lack of isoform transcomplementation in cardiac muscle. Circ Res 82:124–129

    PubMed  CAS  Google Scholar 

  • Gilbert R, Cohen JA, Pardo S, Basu A, Fischman DA (1999) Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J Cell Sci 112:69–79

    PubMed  CAS  Google Scholar 

  • Goulding D, Bullard B, Gautel M (1997) A survey of in situ sarcomere extension in mouse skeletal muscle. J Muscle Res Cell Motil 18:465–472

    Article  PubMed  CAS  Google Scholar 

  • Gruen M, Gautel M (1999) Mutations in beta-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin binding protein-C. J Mol Biol 286:933–949

    Article  PubMed  CAS  Google Scholar 

  • Gruen M, Prinz H, Gautel M (1999) cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin-binding protein C (MyBP-C) with myosin-S2 in an on-off fashion. FEBS Lett 453:254–259

    Article  PubMed  CAS  Google Scholar 

  • Gundapaneni D, Xu J, Root DD (2005) High flexibility of the actomyosin crossbridge resides in skeletal muscle myosin subfragment-2 as demonstrated by a new single molecule assay. J Struct Biol 149:117–126

    Article  PubMed  CAS  Google Scholar 

  • Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL (2002) Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res 90:594–601

    Article  PubMed  CAS  Google Scholar 

  • Harris SP, Rostkova E, Gautel M, Moss RL (2004) Binding of myosin binding protein-C to myosin subfragment S2 affects contractility independent of a tether mechanism. Circ Res 95:930–936

    Article  PubMed  CAS  Google Scholar 

  • Hartzell HC (1985) Effects of phosphorylated and unphosphorylated C-protein on cardiac actomyosin ATPase. J Mol Biol 186:185–195

    Article  PubMed  CAS  Google Scholar 

  • Hartzell HC, Glass DB (1984) Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulin-dependent protein kinases. J Biol Chem 259:15587–15596

    PubMed  CAS  Google Scholar 

  • Herron TJ, Rostkova E, Kunst G, Chaturvedi R, Gautel M, Kentish JC (2006) Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C. Circ Res 98:1234–1236

    Article  CAS  Google Scholar 

  • Hofmann PA, Greaser ML, Moss RL (1990) C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation. J Physiol 439:701–715

    Google Scholar 

  • Hofmann PA, Hartzell HC, Moss RL (1991a) Alterations in Ca2+ sensitive tension due to partial extraction of C- protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97:1141–1163

    Article  PubMed  CAS  Google Scholar 

  • Hofmann PA, Greaser ML, Moss RL (1991b) C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation. J Physiol (Lond) 439:701–715

    CAS  Google Scholar 

  • Jeffries CM, Lu Y, Hynson RM, Taylor JE, Ballesteros M, Kwan AH, Trewhella J (2011) Human cardiac myosin binding protein C: structural flexibility within an extended modular architecture. J Mol Biol 414(5):735–748

    Article  PubMed  CAS  Google Scholar 

  • Kensler RW, Harris SP (2008) The structure of isolated cardiac myosin thick filaments from cardiac myosin binding protein-C knockout mice. Biophys J 94:1707–1718

    Article  PubMed  CAS  Google Scholar 

  • Kensler RW, Shaffer JF, Harris SP (2011) Binding of the N-terminal fragment C0–C2 of cardiac MyBP-C to cardiac F-actin. J Struct Biol 174:44–51

    Article  PubMed  CAS  Google Scholar 

  • Knöll R (2012) Myosin binding protein C: implications for signal-transduction. J Muscle Res Cell Motil. doi:10.1007/s10974-011-9281-6

    Google Scholar 

  • Koretz JF (1979) Effect of C-protein on synthetic myosin filament structure. Biophys J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  • Korte FS, McDonald KS, Harris SP, Moss RL (2003) Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C. Circ Res 93:752–758

    Article  PubMed  CAS  Google Scholar 

  • Kulikovskaya I, McClellan G, Flavigny J, Carrier L, Winegrad S (2003) Effect of MyBP-C binding to actin on contractility in heart muscle. J Gen Physiol 122:761–774

    Article  PubMed  CAS  Google Scholar 

  • Kunst G, Kress K, Gruen M, Uttenweiler D, Gautel M, Fink RHA (2000) MyBP-C (C-protein)—a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin-S2. Circ Res 86:51–58

    PubMed  CAS  Google Scholar 

  • Kuster DW, Bawazeer AC, Zaremba R, Goebel M, Boontje NM, van der Velden J (2012) Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil. doi:10.1007/s10974-011-9280-7

    Google Scholar 

  • Lecarpentier Y, Vignier N, Oliviero P, Guellich A, Carrier L, Coirault C (2008) Cardiac myosin-binding protein C modulates the tuning of the molecular motor in the heart. Biophys J 95:720–728

    Article  PubMed  CAS  Google Scholar 

  • Leroux MR (2000) Analysis of eukaryotic molecular chaperone complexes involved in actin folding. Methods Mol Biol 140:195–206

    PubMed  CAS  Google Scholar 

  • Levine R, Weisberg A, Kulikovskaya I, McClellan G, Winegrad S (2001) Multiple structures of thick filaments in resting cardiac muscle and their influence on cross-bridge interactions. Biophys J 81:1070–1082

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Brown JH, Reshetnikova L, Blazsek A, Farkas L, Nyitray L, Cohen C (2003) Visualization of an unstable coiled coil from the scallop myosin rod. Nature 424:341–345

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an Interaction between the SH3 Domain and the N-terminal extension of the essential light chain in class II myosins. J Mol Biol 371:902–913

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Kwan AH, Trewhella J, Jeffries CM (2011) The C0C1 fragment of human cardiac myosin binding protein C has common binding determinants for both actin and myosin. J Mol Biol 413:908–913

    Article  PubMed  CAS  Google Scholar 

  • Luther PK, Bennett PM, Knupp C, Craig R, Padron R, Harris SP, Patel J, Moss RL (2008) Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle. J Mol Biol 384:60–72

    Article  PubMed  CAS  Google Scholar 

  • Luther PK, Winkler H, Taylor K, Zoghbi ME, Craig R, Padron R, Squire JM, Liu J (2011) Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc Natl Acad Sci USA 108:11423–11428

    Article  PubMed  CAS  Google Scholar 

  • Margossian SS (1985) Reversible dissociation of dog cardiac myosin regulatory light chain 2 and its influence on ATP hydrolysis. J Biol Chem 260:13747–13754

    PubMed  CAS  Google Scholar 

  • Margossian SS, Krueger JW, Sellers JR, Cuda G, Caulfield JB, Norton P, Slayter HS (1991) Influence of the cardiac myosin hinge region on contractile activity. Proc Natl Acad Sci USA 88:4941–4945

    Article  PubMed  CAS  Google Scholar 

  • Marston S, Copeland O, Gehmlich K, Schlossarek S, Carrrier L (2012) How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J Muscle Res Cell Motil. doi:10.1007/s10974-011-9268-3

    Google Scholar 

  • McClellan G, Kulikovskaya I, Winegrad S (2001) Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. Biophys J 81:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Mearini G, Gedicke C, Schlossarek S, Witt CC, Kramer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L (2010) Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res 85:357–366

    Article  PubMed  CAS  Google Scholar 

  • Miller MS, Farman GP, Braddock JM, Soto-Adames FN, Irving TC, Vigoreaux JO, Maughan DW (2011) Regulatory light chain phosphorylation and N-terminal extension increase cross-bridge binding and power output in Drosophila at in vivo myofilament lattice spacing. Biophys J 100:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto CA, Fischman DA, Reinach FC (1999) The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C. J Muscle Res Cell Motil 20:703–715

    Article  PubMed  CAS  Google Scholar 

  • Moos C (1981) Fluorescence microscopy study of the binding of added C-protein to skeletal muscle myofibrils. J Cell Biol 90:25–31

    Article  PubMed  CAS  Google Scholar 

  • Moos C, Mason CM, Besterman JM, Feng IM, Dubin JH (1978) The binding of skeletal muscle C-protein to F-actin and its relation to the interaction of actin with myosin subfragment-1. J Mol Biol 124:571–586

    Article  PubMed  CAS  Google Scholar 

  • Mun JY, Gulick J, Robbins J, Woodhead J, Lehman W, Craig R (2011) Electron microscopy and 3D reconstruction of F-actin decorated with cardiac myosin-binding protein C (cMyBP-C). J Mol Biol 410:214–225

    Article  PubMed  CAS  Google Scholar 

  • Nyland LR, Palmer BM, Chen Z, Maughan DW, Seidman CE, Seidman JG, Kreplak L, Vigoreaux JO (2009) Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity. Biophys J 96:3273–3280

    Article  PubMed  CAS  Google Scholar 

  • Offer G, Moos C, Starr R (1973) A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol 74:653–676

    Article  PubMed  CAS  Google Scholar 

  • Okagaki T, Weber FE, Fischman DA, Vaughan KT, Mikawa T, Reinach FC (1993) The major myosin-binding domain of skeletal muscle MyBP-C (C-protein) resides in the COOH-terminal, immunoglobulin C2 motif. J Cell Biol 123:619–626

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Galkin VE, Jeffries CM, Egelman EH, Trewhella J (2011) The N-terminal domains of myosin Bbinding protein C can bind polymorphically to F-actin. J Mol Biol 412:379–386

    Article  PubMed  CAS  Google Scholar 

  • Palmer BM, Sadayappan S, Wang Y, Weith AE, Previs MJ, Bekyarova T, Irving TC, Robbins J, Maughan DW (2011) Roles for cardiac MyBP-C in maintaining myofilament lattice rigidity and prolonging myosin cross-bridge lifetime. Biophys J 101:1661–1669

    Article  PubMed  CAS  Google Scholar 

  • Pliszka B, Redowicz MJ, Stepkowski D (2001) Interaction of the N-terminal part of the A1 essential light chain with the myosin heavy chain. Biochem Biophys Res Commun 281:924–928

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann L, Kroger I, Vignier N, Schlossarek S, Kramer E, Coirault C, Sultan KR, El-Armouche A, Winegrad S, Eschenhagen T, Carrier L (2007) Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes. Circ Res 101:928–938

    Article  PubMed  CAS  Google Scholar 

  • Randolph TW (2012) The two faces of His-tag: immune response versus ease of protein purification. Biotechnol J 7:18–19

    Article  PubMed  CAS  Google Scholar 

  • Ratti J, Rostkova E, Gautel M, Pfuhl M (2011) Structure and interactions of myosin binding protein domain C0: cardiac specific regulation of myosin at its neck. J Biol Chem 286:12650–12658

    Article  PubMed  CAS  Google Scholar 

  • Razumova MV, Shaffer JF, Tu AY, Flint GV, Regnier M, Harris SP (2006) Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: evidence for long-lived cross-bridges. J Biol Chem 281:35846–35854

    Article  PubMed  CAS  Google Scholar 

  • Razumova MV, Bezold KL, Tu AY, Regnier M, Harris SP (2008) Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae. J Gen Physiol 132:575–585

    Article  PubMed  CAS  Google Scholar 

  • Rybakova IN, Greaser ML, Moss RL (2011) Myosin binding protein C interaction with actin: characterization and mapping of the binding site. J Biol Chem 286:2008–2016

    Article  PubMed  CAS  Google Scholar 

  • Saber W, Begin KJ, Warshaw DM, VanBuren P (2008) Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay. J Mol Cell Cardiol 44:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Sadayappan S, Osinska H, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD, Seidman CE, Seidman JG, Robbins J (2006) Cardiac myosin binding protein C phosphorylation is cardioprotective. Proc Natl Acad Sci USA 103:16918–16923

    Article  PubMed  CAS  Google Scholar 

  • Sarikas A, Carrier L, Schenke C, Doll D, Flavigny J, Lindenberg KS, Eschenhagen T, Zolk O (2005) Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 66:33–44

    Article  PubMed  CAS  Google Scholar 

  • Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T, Carrier L (2012) Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous MYBPC3-targeted knock-in mice. J Muscle Res Cell Motil. doi:10.1007/s10974-011-9273-6

    Google Scholar 

  • Schmeisser H, Kontsek P, Esposito D, Gillette W, Schreiber G, Zoon KC (2006) Binding characteristics of IFN-alpha subvariants to IFNAR2-EC and influence of the 6-histidine tag. J Interferon Cytokine Res 26:866–876

    Article  PubMed  CAS  Google Scholar 

  • Scruggs SB, Hinken AC, Thawornkaiwong A, Robbins J, Walker LA, de Tombe PP, Geenen DL, Buttrick PM, Solaro RJ (2009) Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation. J Biol Chem 284:5097–5106

    Article  PubMed  CAS  Google Scholar 

  • Shaffer JF, Razumova MV, Tu AY, Regnier M, Harris SP (2007) Myosin S2 is not required for effects of myosin binding protein-C on motility. FEBS Lett 581:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Shaffer JF, Kensler RW, Harris SP (2009) The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner. J Biol Chem 284:12318–12327

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, Luther PK, Knupp C (2003) Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J Mol Biol 331:713–724

    Article  PubMed  CAS  Google Scholar 

  • Squire J, Roessle M, Knupp C (2004) New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-ban0064. J Mol Biol 343:1345–1363

    Article  PubMed  CAS  Google Scholar 

  • Starr R, Offer G (1978) The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem J 171:813–816

    PubMed  CAS  Google Scholar 

  • Stelzer JE, Fitzsimons DP, Moss RL (2006a) Ablation of myosin-binding protein-C accelerates force development in mouse myocardium. Biophys J 90:4119–4127

    Article  PubMed  CAS  Google Scholar 

  • Stelzer JE, Patel JR, Moss RL (2006b) Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C. Circ Res 99:884–890

    Article  PubMed  CAS  Google Scholar 

  • Stelzer JE, Dunning SB, Moss RL (2006c) Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ Res 98:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Timson DJ, Trayer HR, Trayer IP (1998) The N-terminus of A1-type myosin essential light chains binds actin and modulates myosin motor function. Eur J Biochem 255:654–662

    Article  PubMed  CAS  Google Scholar 

  • Uys GM, Ramburan A, Loos B, Kinnear CJ, Korkie LJ, Mouton J, Riedemann J, Moolman-Smook JC (2011) Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. BMC Cell Biol 12:18

    Article  PubMed  CAS  Google Scholar 

  • Vydyanath A, Luther P, Gurnett CA, Marston S (2012) Axial distribution of myosin binding protein-C is unaffected by mutations in human cardiac and skeletal muscle. J Muscle Res Cell Motil. doi:10.1007/s10974-012-9286-9

    PubMed  Google Scholar 

  • Weisberg A, Winegrad S (1996) Alteration of myosin cross bridges by phosphorylation of myosin-binding protein C in cardiac muscle. Proc Natl Acad Sci USA 93:8999–9003

    Article  PubMed  CAS  Google Scholar 

  • Weith A, Sadayappan S, Gulick J, Previs MJ, Vanburen P, Robbins J, Warshaw DM (2012) Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain. J Mol Cell Cardiol 52:219–227

    Article  PubMed  CAS  Google Scholar 

  • Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci USA 98:4361–4366

    Article  PubMed  CAS  Google Scholar 

  • Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proc Natl Acad Sci USA 105:18360–18365

    Article  PubMed  CAS  Google Scholar 

  • Witt CC, Gerull B, Davies MJ, Centner T, Linke WA, Thierfelder L (2000) Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C. J Biol Chem 276:5353–5359

    Article  PubMed  Google Scholar 

  • Woodhead JL, Zhao F-Q, Craig R, Egelman EH, Alamo L, Padron R (2005) Atomic model of a myosin filament in the relaxed state. Nature 436:1195–1199

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K (1986) The binding of skeletal muscle C-protein to regulated actin. FEBS Lett 208:123–127

    Article  PubMed  CAS  Google Scholar 

  • Zayakina O, Arkhipenko M, Smirnov A, Rodionova N, Karpova O, Atabekov J (2009) Restoration of potato virus X coat protein capacity for assembly with RNA after his-tag removal. Arch. Virol. 154(2):337–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pfuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfuhl, M., Gautel, M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom?. J Muscle Res Cell Motil 33, 83–94 (2012). https://doi.org/10.1007/s10974-012-9291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-012-9291-z

Keywords

Navigation