Skip to main content
Log in

Evaluating incremental values from new predictors with net reclassification improvement in survival analysis

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Developing individualized prediction rules for disease risk and prognosis has played a key role in modern medicine. When new genomic or biological markers become available to assist in risk prediction, it is essential to assess the improvement in clinical usefulness of the new markers over existing routine variables. Net reclassification improvement (NRI) has been proposed to assess improvement in risk reclassification in the context of comparing two risk models and the concept has been quickly adopted in medical journals (Pencina et al., Stat Med 27:157–172, 2008). We propose both nonparametric and semiparametric procedures for calculating NRI as a function of a future prediction time \(t\) with a censored failure time outcome. The proposed methods accommodate covariate-dependent censoring, therefore providing more robust and sometimes more efficient procedures compared with the existing nonparametric-based estimators (Pencina et al., Stat Med 30:11–21, 2011; Uno et al., Comparing risk scoring systems beyond the roc paradigm in survival analysis, 2009). Simulation results indicate that the proposed procedures perform well in finite samples. We illustrate these procedures by evaluating a new risk model for predicting the onset of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen P, Gill R (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Bilias Y, Gu M, Ying Z (1997) Towards a general asymptotic theory for Cox model with staggered entry. Ann Stat 25:662–682

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Tian L, Uno H, Solomon S, Wei L (2010) Calibrating parametric subject-specific risk estimation. Biometrika 97:389–404

    Article  MathSciNet  MATH  Google Scholar 

  • Cook N (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115:928

    Article  Google Scholar 

  • Cook N, Buring J, Ridker P (2006) The effect of including c-reactive protein in cardiovascular risk prediction models for women. Annals of Internal Medicine 145:21

    Article  Google Scholar 

  • Cui J (2009) Overview of risk prediction models in cardiovascular disease research. Ann Epidemiol 19:711–717

    Article  Google Scholar 

  • Dabrowska D (1997) Smoothed cox regression. Ann Stat 25(4):1510–1540

    Article  MathSciNet  MATH  Google Scholar 

  • Du Y, Akritas M (2002) Uniform strong representation of the conditional Kaplan–Meier process. Math Methods Stat 11:152–182

    MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani R (1997) Improvements on cross-validation: the.632+ bootstrap method. J Am Stat Assoc 92(438):548–560

    MathSciNet  MATH  Google Scholar 

  • Gail M, Brinton L, Byar D, Corle D, Green S, Schairer C, Mulvihill J (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst (JNCI) 81:1879

    Article  Google Scholar 

  • Gu W, Pepe M (2009) Measures to summarize and compare the predictive capacity of markers. Int J Biostat 5:27

    MathSciNet  Google Scholar 

  • Hemann B, Bimson W, Taylor A (2007) The framingham risk score: an appraisal of its benefits and limitations. Am Heart Hosp J 5:91–96

    Article  Google Scholar 

  • Hjort N (1992) On inference in parametric survival data models. Int Stat Rev 60(3):355–387

    Article  MATH  Google Scholar 

  • Kannel W, Feinleib M, McNamara P, Garrison R, Castelli W (1979) An investigation of coronary heart disease in families. Am J Epidemiol 110:281

    Google Scholar 

  • Khot U, Khot M, Bajzer C, Sapp S, Ohman E, Brener S, Ellis S, Lincoff A, Topol E (2003) Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 290:898–904

    Article  Google Scholar 

  • Lin D, Wei L (1989) The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84:1074–1078

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd-Jones D (2010) Cardiovascular risk prediction. Circulation 121:1768–1777

    Article  Google Scholar 

  • Pencina M, D’Agostino R Sr (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21

    Article  MathSciNet  Google Scholar 

  • Pencina M, D’Agostino R Sr, D’Agostino R Jr (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  MathSciNet  Google Scholar 

  • Pollard D (1990) Empirical processes: theory and applications. Institute of Mathematical Statistics, Hayward

    MATH  Google Scholar 

  • Satten G, Datta S (2001) The kaplan-meier estimator as an inverse-probability-of-censoring weighted average. Am Stat 55:207–210

    Article  MathSciNet  MATH  Google Scholar 

  • Tian L, Cai T, Goetghebeur E, Wei L (2007) Model evaluation based on the sampling distribution of estimated absolute prediction error. Biometrika 94:297–311

    Article  MathSciNet  MATH  Google Scholar 

  • Uno H, Cai T, Tian L, Wei L (2007) Evaluating prediction rules for t-year survivors with censored regression models. J Am Stat Assoc 102:527–537

    Article  MathSciNet  MATH  Google Scholar 

  • Uno H, Tian L, Cai T, Kohane I, Wei L (2009) Comparing risk scoring systems beyond the roc paradigm in survival analysis. Harvard University Biostatistics Working Paper Series, p 107

  • Wilson P, D’Agostino R, Levy D, Belanger A, Silbershatz H, Kannel W (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837

    Article  Google Scholar 

  • Zheng Y, Cai T, Pepe M, Levy W (2008) Time-dependent predictive values of prognostic biomarkers with failure time outcome. J Am Stat Assoc 103:362–368

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The Framingham Heart Study and the Framingham SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University. The Framingham SHARe data used for the analyses described in this manuscript were obtained through dbGaP (access number: phs000007.v3.p2). This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or the NHLBI. The work is supported by grants U01-CA86368, P01-CA053996, R01- GM085047, R01-GM079330 awarded by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingye Zheng.

Appendix

Appendix

Throughout, we assume that the joint density of \((T,C,\mathbf{Y})\) is twice continuously differentiable, \(\mathbf{Y}\) are bounded, and \(1 > P(T> t) >0, \,1 > P(C> t) >0\). The kernel function \(K\) is a symmetric probability density function with compact support and bounded second derivative. The bandwidth \(h \rightarrow 0\) such that \(nh^4 \rightarrow 0\). In addition, the estimator \({\widehat{\varvec{\theta }}}_k\) converges to \(\varvec{\theta }_{0k}\) for \(k=1,2\) as \(n \rightarrow \infty \) (Hjort 1992), where \(\varvec{\beta }_{k0}\) is the unique maximizer of the expected value of the corresponding partial likelihood and \(\Lambda _{k0}\) is the baseline cumulative hazard for \(k=1,2\). We denote the parameter space for \(\varvec{\theta }_k\) by \(\Omega _k\) and assume that \(\Omega _k\) is a compact set containing \(\varvec{\theta }_{0k}\). Furthermore, we assume that \(\varvec{\beta }_2 \ne 0\) and note that \(Q(\varvec{\theta }_2) = 1-\exp \{ \Lambda _{02}(t)e^{\varvec{\beta }_2^{\mathsf{\scriptscriptstyle {T}}}\mathbf{Y}_{(2)}} \}\) and \(P(\varvec{\theta }_1) = 1-\exp \{ \Lambda _{01}(t)e^{\varvec{\beta }_1^{\mathsf{\scriptscriptstyle {T}}}\mathbf{Y}_{(1)}} \}\) are the respective limits of \(Q({\widehat{\varvec{\theta }}}_2)\) and \(P({\widehat{\varvec{\theta }}}_1)\), for any given \(\mathbf{Y}_{(2)}\) and \(\mathbf{Y}_{(1)}\). The in-probability convergence of \(Q({\widehat{\varvec{\theta }}}_2) \rightarrow Q(\varvec{\theta }_{02})\) and \(P({\widehat{\varvec{\theta }}}_1)\) and \(P(\varvec{\theta }_{01})\) are uniform in \(\mathbf{Y}_{(2)}\) and \(\mathbf{Y}_{(1)}\) due to the convergence of \({\widehat{\varvec{\theta }}}\rightarrow \varvec{\theta }_0=(\varvec{\theta }_{01}^{\mathsf{\scriptscriptstyle {T}}},\varvec{\theta }_{02}^{\mathsf{\scriptscriptstyle {T}}})^{\mathsf{\scriptscriptstyle {T}}}\).

1.1 Asymptotic Properties of \(\widehat{\text{ NRI}}({\widehat{\varvec{\theta }}}, t)\)

From the same arguments as given in Cai et al. (2010) and Dabrowska (1997), it follows that we have the uniform consistency of \({\widetilde{H}}^{(\iota )}_{q}(t)\) to \(H^{(\iota )}_{q}(t) = P(C \geqslant t \mid Q(\varvec{\theta }_{2}) = q, \Delta (\varvec{\theta }) \in \mho _{\iota }\), where \(\mho _1 = 1\) and \(\mho _{\bullet } = \{0,1\}\), for \(\iota = 1\) and \(\bullet \). It follows, using the uniform law of large numbers (Pollard 1990), that

$$\begin{aligned} \sup _{\varvec{\theta }}| \widetilde{\text{ NRI}}(\varvec{\theta }, t) -\text{ NRI}(\varvec{\theta },t)| \rightarrow 0. \end{aligned}$$

This along with the convergence of \({\widehat{\varvec{\theta }}}\) to \(\varvec{\theta }_0\) implies that \(\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}}, t)\) is uniformly consistent for \(\text{ NRI}(\varvec{\theta }_0,t)\).

Throughout, we will use the fact that \(E\{ \Delta _i(\varvec{\theta })I(X_{i} \leqslant t)\delta _{i} H^{(1)}_{Q_{i}(\varvec{\theta }_2)}(X_i)^{-1} \mid Q_i(\varvec{\theta }_2) = q \} = P(\Delta _i(\varvec{\theta })=1, T_{i} \leqslant t \mid Q_i(\varvec{\theta }_2) = q) \) if either \(C \perp T,\mathbf{Y}_{(2)}\) (model may be misspecified) or \(Q(\varvec{\theta }_2) = \text{ Pr}(T \leqslant t | Y_{(2)})\) i.e. the Cox model is correctly specified though censoring may be such that \(C \perp T \mid \mathbf{Y}_{(2)}\) (double robustness). We first write the i.i.d representation of \(\sqrt{n}[\widetilde{\text{ NRI}}(\varvec{\theta }, t) - \text{ NRI}(\varvec{\theta }, t) ]\) for any \(\varvec{\theta }\). Note that \(\sqrt{n} \{\widetilde{\text{ NRI}}(\varvec{\theta }, t)-\text{ NRI}(\varvec{\theta }, t) \} = 2 \sqrt{n} \{ \widetilde{\text{ Pr}}(\Delta (\varvec{\theta }) =1|T\leqslant t ) - \text{ Pr}(\Delta (\varvec{\theta }) =1|T\leqslant t ) \} - 2\sqrt{n} \{ \widetilde{\text{ Pr}}(\Delta (\varvec{\theta })=1|T > t )- \text{ Pr}(\Delta (\varvec{\theta })=1|T > t ) \}\). We first examine the initial component,

$$\begin{aligned} \widetilde{\text{ Pr}}(\Delta ({\widehat{\varvec{\theta }}}) = 1|T\leqslant t )&= \frac{\sum _{i} \Delta ({\widehat{\varvec{\theta }}})I(X_{i} \leqslant t)\delta _{i} / {\widetilde{H}}^{(1)}_{{Q}_{i}({\widehat{\varvec{\theta }}}_2)}(X_{i})}{\sum _{i} I(X_{i}\leqslant t)\delta _{i} / {\widetilde{H}}^{(\bullet )}_{Q_{i}({\widehat{\varvec{\theta }}}_{2})}(X_{i})} \equiv \frac{{\hat{N}}(t,{\widehat{\varvec{\theta }}}, {\widetilde{H}})}{{\hat{D}}(t, {\widehat{\varvec{\theta }}}, {\widetilde{H}})} \end{aligned}$$

where \({\hat{N}}(t,\varvec{\theta }, H) = n^{-1} \sum _{i} \Delta _{i}(\varvec{\theta })I(X_{i} \leqslant t)\delta _i / H^{(1)}_{Q_{i}(\varvec{\theta }_2)}(X_i)\) and \({\hat{D}}(t,\varvec{\theta },H) = n^{-1} \sum _{i} I(X_i\leqslant t)\delta _{i} / H^{(\bullet )}_{Q_{i}(\varvec{\theta }_2)}(X_i)\). Let \(N(t, \varvec{\theta }) = \text{ Pr}(\Delta (\varvec{\theta })=1, T\leqslant t )\) and \(D(t)= \text{ Pr}(T\leqslant t )\). Then by the uniform consistency of the IPW weights, we have

$$\begin{aligned} \sqrt{n} \{\widetilde{\text{ Pr}}(\Delta (\varvec{\theta })&= 1|T\leqslant t ) - \text{ Pr}(\Delta (\varvec{\theta }) = 1|T\leqslant t ) \}\\&\approx \sqrt{n}\{{\hat{N}}(t,\varvec{\theta }, {\widetilde{H}})D(t)- N(t,\varvec{\theta }){\hat{D}}(t,\varvec{\theta }, {\widetilde{H}})\}/D{(t)}^{2}. \end{aligned}$$

Examining the numerator, \(\sqrt{n}\{ {\hat{N}}(t,\varvec{\theta }, {\widetilde{H}})D(t)- N(t,\varvec{\theta }){\hat{D}}(t,\varvec{\theta }, {\widetilde{H}}) \} = \sqrt{n}\{ (1) + (2) - (3) \}\) where \((1) = {\hat{N}}(t,\varvec{\theta }, H)D(t)- {\hat{D}}(t,\varvec{\theta }, H)N(t,\varvec{\theta }), \quad (2) = {\hat{N}}(t,\varvec{\theta }, {\widetilde{H}})D(t) - {\hat{N}}(t,\varvec{\theta }, H)D(t),\) and \( (3) = [N(t,\varvec{\theta }){\hat{D}}(t,\varvec{\theta }, {\widetilde{H}}) - {\hat{D}}(t,\varvec{\theta }, H)N(t,\varvec{\theta }) ].\) Note that

$$\begin{aligned} (1)&= \sqrt{n}({\hat{N}}(t,\varvec{\theta }, H)D(t) - {\hat{D}}(t,\varvec{\theta }, H)N(t,\varvec{\theta })) = n^{-\frac{1}{2}}\sum U_{1i}(t), \text{ where} \\ U_{1i}(t)&= \frac{I(X_i \leqslant t) \delta _i }{H^{(1)}_{Q_i(\varvec{\theta }_2)}(X_i)} \Delta _i(\varvec{\theta })D(t)- \frac{I(X_i \leqslant t) \delta _i }{H^{(\bullet )}_{Q_i(\varvec{\theta }_2)}(X_i)} N(t,\varvec{\theta }) \end{aligned}$$

Using a Taylor series expansion, Lemma A.3 of Bilias et al. (1997) and the asymptotic expansion for \(\widehat{\Lambda }_{q}(t)\) given in Du and Akritas (2002),

$$\begin{aligned} (2)&= D(t)\sqrt{n}\{{\hat{N}}(t,\varvec{\theta }, {\widetilde{H}}) - {\hat{N}}(t,\varvec{\theta },H)\} \\&= D(t)n^{-1/2} \sum _i \frac{\Delta _i(\varvec{\theta })I(X_i \leqslant t) \delta _i}{H^{(1)}_{Q_i(\varvec{\theta }_2)}(X_i)} \left[\frac{H^{(1)}_{Q_i(\varvec{\theta }_2)}(X_i)}{{\widetilde{H}}^{(1)}_{Q_i(\varvec{\theta }_2)}(X_i)} -1 \right] \\&= D(t)n^{-1/2} \int \int _0^t \left[\frac{H^{(1)}_{q}(s)}{{\widetilde{H}}^{(1)}_{q}(s)} \!-\!1 \right] d \sum _i \frac{\Delta _i(\varvec{\theta }) \delta _iI(X_i \leqslant s, Q_i(\varvec{\theta }_2) \leqslant q)}{H^{(1)}_{Q_i(\varvec{\theta }_2)}(X_i)} \\&\approx D(t)\int \int _0^t \sqrt{n} \left[\widehat{\Lambda }^{(1)}_{q}(s) \!-\! \Lambda ^{(1)}_{q}(s) \right] d \left\{ \frac{1}{n} \sum _i \frac{\Delta _i(\varvec{\theta }) \delta _iI(X_i \leqslant s, Q_i(\varvec{\theta }_2) \leqslant q)}{H^{(1)}_{Q_i(\varvec{\theta }_2),}(X_i)} \right\} \\&\approx D(t)\int \int _0^t \left[n^{-\frac{1}{2}}\sum K_h\left\{ q-Q_i(\varvec{\theta }_2)\right\} M_{Cq}^{(1)}(s,X_i, \delta _i) \right] d P(\Delta (\varvec{\theta }) = 1,\\&\quad T\leqslant t, Q (\varvec{\theta }_2) \leqslant q) \end{aligned}$$

where

$$\begin{aligned} M_{Cq}^{(1)}(t,X_i, \delta _i) = \int _0^t \frac{dN_{Ci}(s)-I(X_i \geqslant s) d\Lambda ^{(1)}_q(s)}{\pi _s^{(1)}(q)}. \end{aligned}$$

Now by a change of variable, \(\psi = \frac{q-Q_i{(\varvec{\theta }_2)}}{h}\) and \(f(t,q) \equiv \partial ^2 P(\Delta (\varvec{\theta }) = 1, T\leqslant t, Q (\varvec{\theta }_2) \leqslant q) / \partial t \partial q\),

$$\begin{aligned} (2)&\approx D(t)\int \int _0^t \sqrt{n} \left[\frac{1}{n} \sum K\left(\psi \right) M_{{C(\psi h + Q_i(\varvec{\theta }_2))}}(s,X_i, \delta _i) \right] f(t,\psi h + Q_i) ds d\psi \\&= D(t)n^{-1/2} \sum \int \int _0^t K\left(\psi \right) a\{s,h\psi +Q_i(\varvec{\theta }_2),X_i\} d{ s} d\psi = n^{-\frac{1}{2}}\sum U_{2i}(t), \end{aligned}$$

where \(U_{2i}(t) = D(t) \int _0^t a(s,{ q^*}, X_i) ds\) and \(a(t,q, X_i) \!=\! M_{ {Cq^*}}(t,X_i, \delta _i) f(t,{ q^*})\). Similar arguments can be used to obtain an asymptotic expansion for (3) as \((3) \approx n^{-\frac{1}{2}}\sum U_{3i}(t)\) and therefore, the numerator, \(\sqrt{n}\left[{\hat{N}}(t,\varvec{\theta }, {\widetilde{H}})D(t)\!\!-\!\! N(t,\varvec{\theta }){\hat{D}}(t,\varvec{\theta }, {\widetilde{H}}) \right] \approx n^{-\frac{1}{2}}\sum \{U_{1i}(t) + U_{2i}(t) + U_{3i}(t)\}.\) The same arguments as given above can be used to obtain an asymptotic expansion for \(\sqrt{n} \{ \widetilde{\text{ Pr}}(\Delta (\varvec{\theta })=1|T > t )- \text{ Pr}(\Delta (\varvec{\theta })=1|T > t ) \}\) as \(n^{-\frac{1}{2}}\sum _{i=1}^nD(t)_{-}^{-2}\{U_{-1i}(t) + U_{-2i}(t) + U_{-3i}(t) \} \) where \(D(t)_{-}\), \(U_{-1i}(t), U_{-2i}(t),\) and \(U_{-3i}(t)\) are defined similarly to \(D(t)\), \(U_{1i}(t), U_{2i}(t),\) and \(U_{3i}(t)\) with \(T\leqslant t\) replaced with \(T > t\). Therefore, \(\sqrt{n} \{ \widetilde{\text{ NRI}}(\varvec{\theta }, t)-\text{ NRI}(\varvec{\theta }, t) \} \approx n^{-\frac{1}{2}}\sum _{i=1}^n 2[ D(t)^{-2}\{U_{1i}(t) + U_{2i}(t) + U_{3i}(t)\}- D(t)_{-}^{{ -2}}\{U_{-1i}(t) + U_{-2i}(t) + U_{-3i}(t)\}] = n^{-\frac{1}{2}}\sum _{i=1}^n \eta _i(t)\).

Note that regardless of correct model specification, \(\sqrt{n}({\widehat{\varvec{\theta }}}- \varvec{\theta }_0) = n^{-1/2} \sum \psi _i + o_p(1)\) where \(\psi _i\) are i.i.d mean zero random variables by Lin and Wei (1989) and Uno et al. (2009). Using a Taylor series approximation and the i.i.d representation of \( \sqrt{n}[\widetilde{\text{ NRI}}(\varvec{\theta },t) - \text{ NRI}(\varvec{\theta }, t) ]\) for any \(\varvec{\theta }\), we can write \(\widetilde{\mathcal{W }}(t) = \sqrt{n}[\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}}, t) - \text{ NRI}(\varvec{\theta }_0, t) ] \) as a sum of i.i.d terms, \(n^{-1/2} \sum _{i=1}^n \epsilon _i(t)\) defined below.

$$\begin{aligned} \sqrt{n}[\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}}, t) \!-\! \text{ NRI}(\varvec{\theta }_0, t) ]\, = \, \sqrt{n}[\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}}, t) \!-\! \text{ NRI}({\widehat{\varvec{\theta }}}, t) \!+\! \text{ NRI}({\widehat{\varvec{\theta }}}, t) \!-\! \text{ NRI}(\varvec{\theta }_0, t) ] \\ \approx \sqrt{n}[\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}},t) \!-\! \text{ NRI}({\widehat{\varvec{\theta }}}, t) \!+\! \frac{\partial \text{ NRI}(t)}{\partial \varvec{\theta }} |_{\varvec{\theta }_0} ({\widehat{\varvec{\theta }}}\!-\! \varvec{\theta }_0) \\ \, = \, \sqrt{n}[\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}},t) \!-\! \text{ NRI}({\widehat{\varvec{\theta }}}, t) ] \!+\! \sqrt{n}({\widehat{\varvec{\theta }}}\!-\! \varvec{\theta }_0) \frac{\partial \text{ NRI}(t)}{\partial \varvec{\theta }} |_{\varvec{\theta }_0} \\ \approx \sqrt{n}[\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}},t) \!-\! \text{ NRI}({\widehat{\varvec{\theta }}}, t) ] \!+\! n^{-1/2} \sum \psi _i \frac{\partial \text{ NRI}(t)}{\partial \varvec{\theta }} |_{\varvec{\theta }_0} \\ \approx n^{-1/2} \sum _{i=1}^n \eta _i(t) \!+\! n^{-1/2} \sum \psi _i \frac{\partial \text{ NRI}(t)}{\partial \varvec{\theta }} |_{\varvec{\theta }_0} \\ = n^{-1/2} \sum _{i=1}^n \epsilon _i(t) \end{aligned}$$

where \(\epsilon _i(u,v,t) = \eta _i(u,v,t) + \psi _i \frac{\partial \text{ NRI}(t)}{\partial \varvec{\theta }} |_{\varvec{\theta }_0}\). By a functional central limit theorem of Pollard (1990), the process \(\widetilde{\mathcal{W }}(t)\) converges weakly to a mean zero Gaussian process in \(t\).

1.2 Asymptotic Properties of \(\widehat{\text{ NRI}}({\widehat{\varvec{\theta }}}, t)\)

Recall that we assume the Cox model is correctly specified and thus, \(Q(\varvec{\theta }_2) = Q(\varvec{\theta }_2, t, \mathbf{Y}_{(2)})= \text{ Pr}(T \leqslant t | Y_{(2)}) = 1-\exp \{ \Lambda _{02}(t)e^{\varvec{\beta }_2 ^{\mathsf{\scriptscriptstyle {T}}}Y_{(2)}} \}\) and \(S_{Q_i(\varvec{\theta }_2)}(t) = \text{ Pr}(T > t | Y_{(2)}) = \exp \{ \Lambda _{02}(t)e^{\varvec{\beta }_2 Y_{(2)}} \}\). To derive asymptotic properties of \(\widehat{\text{ NRI}}({\widehat{\varvec{\theta }}}, t)\) we assume the same regularity conditions as in Andersen and Gill (1982). The uniform consistency of \(Q({\widehat{\varvec{\theta }}}_2, t, \mathbf{Y}_{(2)})\) for \(Q(\varvec{\theta }_2, t, \mathbf{Y}_{(2)})\) in \(t\) and \(\mathbf{Y}_{(2)}\) follows directly from the uniform consistency of \({\widehat{\Lambda }}_{02}(t)\) and \({\widehat{\varvec{\beta }}}_2\). It follows from the uniform law of large numbers (Pollard 1990) that \(\widehat{\text{ NRI}}({\widehat{\varvec{\theta }}}, t)\) is uniformly consistent for \(\text{ NRI}(\varvec{\theta }_0, t)\). Andersen and Gill (1982) show that \(\sqrt{n}({\widehat{\beta }}_2 - \beta _{02})\) is a normal random variable and \(\sqrt{n}({\widehat{\Lambda }}_{02}(t) - \Lambda _{02}(t))\) converges to a Gaussian process. By the functional delta method it can be shown that \(\sqrt{n}\{Q({\widehat{\varvec{\theta }}}_2, t, \mathbf{Y}_{(2)}) - Q(\varvec{\theta }_2, t, \mathbf{Y}_{(2)}) \}\) converges to a zero mean Gaussian process in \(t\) and \(\mathbf{Y}_{(2)}\) (Zheng et al. 2008). Similar to the derivation for \(\widetilde{\text{ NRI}}({\widehat{\varvec{\theta }}}, t)\), it can be shown that the process \(\widetilde{\mathcal{N}}(t) = \sqrt{n} [ \widehat{\text{ NRI}}({\widehat{\varvec{\theta }}}, t) - \text{ NRI}(\varvec{\theta }_0, t) ]\) is asymptotically equivalent to \(n^{-1/2} \sum _{i=1}^n \zeta _i(u,v,t).\) In particular, for a fixed \(\varvec{\theta }, \, \sqrt{n} \{ \widehat{\text{ NRI}}(\varvec{\theta }, t)-\text{ NRI}(\varvec{\theta }, t) \} \approx n^{-1/2} \sum _{i=1}^n \eta ^*_i(t)\) where \(\eta ^*_i(t) = 2 [D(t)^{-2} \{ \Delta _i(\varvec{\theta })Q_i(\varvec{\theta }_2)- \text{ Pr}(\Delta _i(\varvec{\theta })=1 | T_i \leqslant t) Q_i(\varvec{\theta }_2) \} - D(t)_{-}^{-2} \{ \Delta _i(\varvec{\theta })[1-Q_i(\varvec{\theta }_2)] - \text{ Pr}(\Delta _i(\varvec{\theta }) = 1 | T_i > t) [1-Q_i(\varvec{\theta }_2)]\}] \). Thus, \(\widetilde{\mathcal{N}}(t) \approx n^{-1/2} \sum _{i=1}^n \zeta _i(t)\) where \(\zeta _i(u,v,t) = \eta ^*_i(t) + \psi _i \frac{\partial \text{ NRI}(t)}{\partial \varvec{\theta }} |_{\varvec{\theta }_0}\). Once again, using a functional central limit theorem, this implies that \(\widetilde{\mathcal{N}}(t)\) converges to a Gaussian process with mean zero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Parast, L., Cai, T. et al. Evaluating incremental values from new predictors with net reclassification improvement in survival analysis. Lifetime Data Anal 19, 350–370 (2013). https://doi.org/10.1007/s10985-012-9239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-012-9239-z

Keywords

Navigation