Skip to main content

Advertisement

Log in

Estimating the concordance probability in a survival analysis with a discrete number of risk groups

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

A clinical risk classification system is an important component of a treatment decision algorithm. A measure used to assess the strength of a risk classification system is discrimination, and when the outcome is survival time, the most commonly applied global measure of discrimination is the concordance probability. The concordance probability represents the pairwise probability of lower patient risk given longer survival time. The c-index and the concordance probability estimate have been used to estimate the concordance probability when patient-specific risk scores are continuous. In the current paper, the concordance probability estimate and an inverse probability censoring weighted c-index are modified to account for discrete risk scores. Simulations are generated to assess the finite sample properties of the concordance probability estimate and the weighted c-index. An application of these measures of discriminatory power to a metastatic prostate cancer risk classification system is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting procsses: a large sample study. Ann Stat 10:1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng SC, Wei LJ, Ying Z (1995) Analysis of transformation models with censored data. Biometrika 82:835–845

    Article  MathSciNet  MATH  Google Scholar 

  • Danila DC, Fleisher M, Scher HI (2011) Circulating tumor cells as biomarkers in prostate cancer. Clin Cancer Res 17:3903–3912

    Article  Google Scholar 

  • Danila DC, Anand A, Schultz N, Heller G, Wan M, Sung CC, Dai C, Khanin R, Fleisher M, Lilja H, Scher HI (2014) Analytic and clinical validation of a prostate cancer-enhanced messenger RNA detection assay in whole blood as a prognostic biomarker for survival. Eur Urol 65:1191–1197

    Article  Google Scholar 

  • Fine JP, Ying Z, Wei LJ (1998) On the linear transformation model for censored data. Biometrika 85:980–986

    Article  MATH  Google Scholar 

  • Gerds TA (2014) Prediction error curves for risk prediction models in survival analysis. R package version 2.4.2

  • Gerds TA, Kattan MW, Schumacher M, Yu C (2013) Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med 32:2173–2184

    Article  MathSciNet  Google Scholar 

  • Gönen M, Heller G (2005) Concordance probability and discriminatory power in proportional hazards regression. Biometrika 92:965–970

    Article  MathSciNet  MATH  Google Scholar 

  • Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526

    Article  MathSciNet  MATH  Google Scholar 

  • Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. J Am Med Assoc 247:2543–2546

    Article  Google Scholar 

  • Kalbfleisch JD (1978) Likelihood methods and nonparametric tests. J Am Med Assoc 73:167–170

    MathSciNet  MATH  Google Scholar 

  • Lin DY, Wei LJ, Ying Z (1993) Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80:557–572

    Article  MathSciNet  MATH  Google Scholar 

  • Mo Q, Gönen M, Heller G (2012) CPE: concordance probability estimates in survival analysis. R package version 1.4.3

  • Scher HI, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, Heller G (2009) Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol 10:233–239

    Article  Google Scholar 

  • Sprent P (1989) Applied nonparametric statistical methods, 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  • Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ (2011) On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med 30:1105–1117

    MathSciNet  Google Scholar 

  • Yan G, Greene T (2008) Investigating the effects of ties on measures of concordance. Stat Med 27:4190–4206

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Heller.

Appendix

Appendix

1.1 The asymptotic distribution for the CPE excluding ties

It is assumed that the proportional hazards model \( h(t|\varvec{X}) = h_0(t) \exp (\varvec{\beta }_0^T \varvec{X}) \) is the correct specification for the data and that the standard conditions for the asymptotic normality of \(n^{1/2} (\hat{\varvec{\beta }} - \varvec{\beta }_0)\) apply (Andersen and Gill 1982).

Consistency of the CPE excluding ties: \( \ \ K_{n,E}(\hat{\varvec{\beta }}) \ \mathop {\rightarrow }\limits ^{p} \ {\mathcal {C}}_E\) where

$$\begin{aligned} K_{n,E}\big (\hat{\varvec{\beta }}\big )= & {} \frac{ \sum _i \sum _j I\Big (\hat{\varvec{\beta }}^T \varvec{X}_i > \hat{\varvec{\beta }}^T \varvec{X}_j\Big )\bigg [1+\exp \Big (\hat{\varvec{\beta }}^T\varvec{X}_{ji}\Big )\bigg ]^{-1}}{\sum _i \sum _j I\Big (\hat{\varvec{\beta }}^T \varvec{X}_i > \hat{\varvec{\beta }}^T \varvec{X}_j\Big )}\\ \text{ and } {\mathcal {C}}_E= & {} \text{ Pr }\bigg [ \varvec{\beta }_0^\text {T}\varvec{X}_1 > \varvec{\beta }_0^\text {T}\varvec{X}_2 | T_2 > T_1, \varvec{\beta }_0^\text {T}\varvec{X}_1 \ne \varvec{\beta }_0^\text {T}\varvec{X}_2 \bigg ] . \end{aligned}$$

Using the proportional hazards specification provided in Sect. 2 and the law of large numbers,

$$\begin{aligned} K_{n,E}\big (\hat{\varvec{\beta }}\big ) \ \mathop {\rightarrow }\limits ^{p} \text{ Pr }\bigg [ T_2 > T_1 | \varvec{\beta }_0^\text {T}\varvec{X}_1 > \varvec{\beta }_0^\text {T}\varvec{X}_2\bigg ] . \end{aligned}$$

Note that the concordance probability excluding ties may be written as

$$\begin{aligned} {\mathcal {C}}_E = \text{ Pr }\Big [ T_2 > T_1 | \varvec{\beta }_0^\text {T}\varvec{X}_1 > \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ] \times \frac{\text{ Pr }\Big [\varvec{\beta }_0^\text {T}\varvec{X}_1 > \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ]}{\text{ Pr }\Big [ T_2 > T_1, \varvec{\beta }_0^\text {T}\varvec{X}_1 \ne \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ]} . \end{aligned}$$
(1)

Now using the independence between subjects, the following relations hold

$$\begin{aligned} \text{ Pr }\Big [\varvec{\beta }_0^\text {T}\varvec{X}_1 > \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ]= & {} \frac{\text{ Pr }\Big [\varvec{\beta }_0^\text {T}\varvec{X}_1 \ne \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ]}{2} \end{aligned}$$
(2)
$$\begin{aligned} \frac{1}{2}= & {} \text{ Pr }\Big [T_2 > T_1 | \varvec{\beta }_0^\text {T}\varvec{X}_1 \ne \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ] \text{ Pr }\Big [\varvec{\beta }_0^\text {T}\varvec{X}_1 \ne \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ]\nonumber \\&+ \,\text{ Pr }\Big [T_2 > T_1 | \varvec{\beta }_0^\text {T}\varvec{X}_1 = \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ] \text{ Pr }\Big [\varvec{\beta }_0^\text {T}\varvec{X}_1 = \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ] \end{aligned}$$
(3)

Substituting (2) into (3), it follows that

$$\begin{aligned} \text{ Pr }\Big [T_2 > T_1 , \varvec{\beta }_0^\text {T}\varvec{X}_1 \ne \varvec{\beta }_0^\text {T}\varvec{X}_2 \Big ] = \text{ Pr }\Big [\varvec{\beta }_0^\text {T}\varvec{X}_1 > \varvec{\beta }_0^\text {T}\varvec{X}_2\Big ] \end{aligned}$$
(4)

and substitution of (4) into the denominator of (1) proves the consistency of the CPE.

Asymptotic distribution of \( \ n^{1/2} \left[ K_{n,E}\big (\hat{\varvec{\beta }}\big ) - {\mathcal {C}}_E \right] \)

To prove the asymptotic normality of the CPE, it is first shown that if

$$\begin{aligned} \Big |\varvec{\beta }_0^T \varvec{X}_{ij}\Big | > \epsilon > 0 , \end{aligned}$$
(5)

then \(n^{1/2} K_{n,E}(\hat{\varvec{\beta }})\) is asymptotically equal to

$$\begin{aligned} n^{1/2} \tilde{K}_{n,E}\big (\hat{\varvec{\beta }}\big ) = \frac{ n^{-3/2} \sum _i \sum _j I\Big (\varvec{\beta }_0^T \varvec{X}_{ij} > 0\Big )\bigg [1+\exp \Big (\hat{\varvec{\beta }}^\text {T}\varvec{X}_{ji}\Big )\bigg ]^{-1}}{ n^{-2} \sum _i \sum _j I\Big (\varvec{\beta }_0^T \varvec{X}_{ij} > 0\Big )} \end{aligned}$$

where within the indicator functions the estimate \(\hat{\varvec{\beta }}\) is replaced with the true regression coefficient \(\varvec{\beta }_0\) and \(\varvec{X}_{ij} = \varvec{X}_i-\varvec{X}_j\). Note that in the discrete covariate case there are a finite number of covariate values \(\varvec{X}_{ij}\). As a result, (5) is not a strong assumption.

The asymptotic equality is demonstrated by considering the cases \(\varvec{X}_{ij}=0\) and \(\varvec{X}_{ij} \ne 0\) separately.

If \(\varvec{X}_{ij} = 0\), then clearly \(I(\hat{\varvec{\beta }}^T \varvec{X}_{ij} > 0) = I(\varvec{\beta }_0^T \varvec{X}_{ij} > 0)\).

If \(\varvec{X}_{ij} \ne 0\), then using the consistency of \(\hat{\varvec{\beta }}\) and assumption (A.5), for n sufficiently large, \(|\hat{\varvec{\beta }}^T \varvec{X}_{ij}| > \nu > 0\) and \(I(\hat{\varvec{\beta }}^T \varvec{X}_{ij} > 0) = I(\varvec{\beta }_0^T \varvec{X}_{ij} > 0)\) for all \(\varvec{X}_{ij}\) . Therefore, for n large,

$$\begin{aligned} n^{1/2} K_{n,E}\big (\hat{\varvec{\beta }}\big ) = n^{1/2} \tilde{K}_{n,E}\big (\hat{\varvec{\beta }}\big ). \end{aligned}$$

A Taylor expansion for the asymptotically equivalent CPE produces

$$\begin{aligned} n^{1/2} \left[ \tilde{K}_{n,E}\big (\hat{\varvec{\beta }}\big ) - {\mathcal {C}}_E \right]= & {} n^{1/2} \left[ \tilde{K}_{n,E}\big (\varvec{\beta }_0\big ) - {\mathcal {C}}_E \right] \\&+ \left( \frac{\partial \tilde{K}_{n,E}}{\partial \varvec{\beta }}\right) ^\text {T} \left[ n^{1/2}\big (\hat{\varvec{\beta }} - \varvec{\beta }_0\big )\right] + o_p(1) . \end{aligned}$$

The partial derivative \( \partial \tilde{K}_{n,E}/\partial \varvec{\beta }\) is asymptotically constant. Since \(n^{1/2}(\hat{\varvec{\beta }} - \varvec{\beta }_0)\) has asymptotic mean zero conditional on \(\varvec{X}\), it is asymptotically independent of \(n^{1/2} \left[ \tilde{K}_{n,E}(\varvec{\beta }_0) - {\mathcal {C}}_E \right] \). Therefore the asymptotic variance of \( \tilde{K}_{n,E}(\hat{\varvec{\beta }})\) is

$$\begin{aligned} \text{ Var }\bigg \{ n^{1/2} \left[ \tilde{K}_{n,E}\big (\varvec{\beta }_0\big ) - {\mathcal {C}}_E \right] \bigg \} + \left( \frac{\partial \tilde{K}_{n,E}}{\partial \varvec{\beta }}\right) ^\text {T} \text{ Var }[\hat{\varvec{\beta }}] \left( \frac{\partial \tilde{K}_{n,E}}{\partial \varvec{\beta }} \right) . \end{aligned}$$

The individual components of the asymptotic variance can be estimated as follows. In each case, the substitution of \(\hat{\varvec{\beta }}\) for \(\varvec{\beta }_0\) provides a consistent estimate.

The \(\text{ Var }(\hat{\varvec{\beta }})\) is estimated from the inverse of the second derivative of the partial likelihood.

The partial derivative evaluated at \(\varvec{\beta }_0\) is equal to

$$\begin{aligned} \frac{\partial \tilde{K}_{n,E}(\varvec{\beta })}{\partial \varvec{\beta }} = - \frac{ \sum _i \sum _j I\Big (\varvec{\beta }_0^T \varvec{X}_{ij} > 0\Big ) \varvec{X}_{ji} \exp \Big (\varvec{\beta }_0^T \varvec{X}_{ji}\Big ) \left[ 1+\exp \Big (\varvec{\beta }_0^T \varvec{X}_{ji}\Big )\right] ^{-2} }{\sum _i \sum _j I\Big (\varvec{\beta }_0^T \varvec{X}_{ij} > 0\Big )}. \end{aligned}$$

The first term, \(n^{1/2} \left[ \tilde{K}_{n,E}(\varvec{\beta }_0) - {\mathcal {C}}_E \right] \), may be approximated by the U-statistic

$$\begin{aligned} \pi ^{-1} n^{-3/2} \sum _i \sum _j I\Big (\varvec{\beta }_0^T \varvec{X}_{ij} > 0\Big ) \left\{ \left[ 1+\exp \Big (\varvec{\beta }_0^T \varvec{X}_{ji}\Big )\right] ^{-1} - {\mathcal {C}}_E \right\} \end{aligned}$$

where \(\pi = \lim _{n \rightarrow \infty } n^{-2} \sum _i \sum _j I(\varvec{\beta }_0^T \varvec{X}_{ij} > 0)\).

The asymptotic variance of this U-statistic is

$$\begin{aligned} \pi ^{-2} n^{-3} \sum _i \sum _j \sum _{k \ne j} \left[ u_{ij} + u_{ji} \right] \left[ u_{ik} + u_{ki}\right] . \end{aligned}$$

where

$$\begin{aligned} u_{ij} = I\Big (\varvec{\beta }_0^T \varvec{X}_{ij} > 0\Big ) \left\{ \left[ 1+\exp (\varvec{\beta }_0^T \varvec{X}_{ji})\right] ^{-1} - {\mathcal {C}}_E \right\} . \end{aligned}$$

Combining these results provides the estimated asymptotic variance of the CPE excluding ties.

Asymptotic distribution of \( \ n^{1/2} \left[ C_{n,E}\big (\hat{\varvec{\beta }}\big ) - {\mathcal {C}}_E \right] \)

From Sect. 3.2, this expression may be written as

$$\begin{aligned}&\frac{ n^{-3/2} \sum _i \sum _j \delta _i I\big (y_i \!<\! y_j\big ) I\Big (\hat{\varvec{\beta }}^T\varvec{X}_i \!\ne \! \hat{\varvec{\beta }}^T\varvec{X}_j\Big ) \left\{ \hat{G}\Big (y_i|\hat{\varvec{\beta }}^T\varvec{X}_i\Big ) \hat{G}\Big (y_i|\hat{\varvec{\beta }}^T\varvec{X}_j\Big )\right\} ^{-1} \left[ I\Big (\hat{\varvec{\beta }}^T\varvec{X}_i \!>\! \hat{\varvec{\beta }}^T\varvec{X}_j\Big ) - {\mathcal {C}}_E \!\right] }{ n^{-2} \sum _i \sum _j \delta _i I(y_i \!<\! y_j) I(\hat{\varvec{\beta }}^T\varvec{X}_i \!\ne \! \hat{\varvec{\beta }}^T\varvec{X}_j) \left\{ \hat{G}(y_i|\hat{\varvec{\beta }}^T\varvec{X}_i)\hat{G}(y_i|\hat{\varvec{\beta }}^T\varvec{X}_j)\right\} ^{-1}}\\&\quad = \psi ^{-1} n^{-3/2} \sum _i \sum _j \frac{\delta _i I\big (y_i < y_j\big ) I\Big (\varvec{\beta }_0^T\varvec{X}_i \ne \varvec{\beta }_0^T\varvec{X}_j\Big ) \left[ I\Big (\varvec{\beta }_0^T\varvec{X}_i > \varvec{\beta }_0^T\varvec{X}_j\Big ) - {\mathcal {C}}_E \right] }{G\Big (y_i|\hat{\varvec{\beta }}^T\varvec{X}_i\Big ) G\Big (y_i|\hat{\varvec{\beta }}^T\varvec{X}_j\Big )} \ + o_p(1) \end{aligned}$$

where \(\psi = \lim _{n \rightarrow \infty } n^{-2} \sum _i \sum _j \delta _i I(y_i < y_j) I(\hat{\varvec{\beta }}^T\varvec{X}_i \!\ne \! \hat{\varvec{\beta }}^T\varvec{X}_j) \hat{G}^{-1}(y_i|\hat{\varvec{\beta }}^T\varvec{X}_i)\hat{G}^{-1}(y_i|\hat{\varvec{\beta }}^T\varvec{X}_j)\).

Letting

$$\begin{aligned} e_{ij} = \delta _i I\big (y_i < y_j\big ) I\Big (\varvec{\beta }_0^T\varvec{X}_i \ne \varvec{\beta }_0^T\varvec{X}_j\Big ) \left[ I\Big (\varvec{\beta }_0^T\varvec{X}_i > \varvec{\beta }_0^T\varvec{X}_j\Big ) - {\mathcal {C}}_E \right] \end{aligned}$$

and Taylor expanding \(\hat{\varvec{\beta }}\) around \(\varvec{\beta }_0\),

$$\begin{aligned}&n^{1/2} \left[ C_{n,E}\big (\hat{\varvec{\beta }}\big ) - {\mathcal {C}}_E \right] \\&\quad = \psi ^{-1} n^{-3/2} \sum _i \sum _j \frac{e_{ij}}{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big )G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big )} \\&\qquad +\,\psi ^{-1} n^{-3/2} \sum _i \sum _j \frac{e_{ij}}{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big )G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big )}\\&\qquad \times \left[ \frac{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big ) - \hat{G}\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big )}{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big )} + \frac{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big ) - \hat{G}\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big )}{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big )}\right] \\&\qquad +\psi ^{-1} n^{-3/2} \sum _i \sum _j \left\{ \left[ \frac{\partial }{\partial \varvec{\beta }} \frac{e_{ij}}{G\Big (y_i|\varvec{\beta }^T\varvec{X}_i\Big )G\Big (y_i|\varvec{\beta }^T\varvec{X}_j\Big )}\right] ^T \right\} \Big (\hat{\varvec{\beta }} - \varvec{\beta }_0\Big ) + o_p(1) \end{aligned}$$

The second term may be rewritten using the martingale representation theorem as

$$\begin{aligned} 2 n^{-1/2} \sum _{k=1}^n \int _{t=0}^{\infty } \frac{q_{\varvec{X}_k}(t)}{\theta _{\varvec{X}_k}(t)} dM_{\varvec{X}_k}(t) \end{aligned}$$

where

$$\begin{aligned} q_{\varvec{X}_k}(t)= & {} \lim _{n \rightarrow \infty } \sum _i \sum _j \left\{ \frac{e_{ij}}{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big )G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big )} \right\} \\&\left\{ I\Big (y_j \ge t\Big ) \left[ I\Big (\varvec{X}_i = \varvec{X}_k\Big ) + I\Big (\varvec{X}_j = \varvec{X}_k\Big ) \right] \right\} \\ \theta _{\varvec{X}_k}(t)= & {} \lim _{n \rightarrow \infty } \sum _j I\Big (y_j \ge t, \varvec{X}_j = \varvec{X}_k\Big )\\ M_{\varvec{X}_k}(t)= & {} I\Big (y_k \le t, \delta _k = 0\Big ) - \int _{u=0}^t I\Big (y_k \ge u\Big )d\Lambda _{\varvec{X}_k}(u) \end{aligned}$$

and \(\Lambda _{\varvec{X}_k}\) is the cumulative hazard of the censoring random variable belonging to group \(\varvec{X}_k\) (Cheng et al. 1995; Fine et al. 1998).

It follows that \(n^{1/2} \left[ C_{n,E}(\hat{\varvec{\beta }}) - {\mathcal {C}}_E \right] \)

$$\begin{aligned}&= \psi ^{-1} n^{-3/2} \sum _i \!\sum _j \frac{e_{ij}}{G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_i\Big )G\Big (y_i|\varvec{\beta }_0^T\varvec{X}_j\Big )}\\&\quad +\, 2 \psi ^{-1} n^{-1/2} \sum _{k=1}^n \int _{t=0}^{\infty } \frac{q_{\varvec{X}_k}(t)}{\theta _{\varvec{X}_k}(t)} dM_{\varvec{X}_k}(t)\\&\quad + \,\psi ^{-1} \left\{ n^{-2} \sum _i \sum _j\left[ \!\frac{\partial }{\partial \varvec{\beta }} \frac{e_{ij}}{G\Big (y_i|\varvec{\beta }^T\varvec{X}_i\Big )G\Big (y_i|\varvec{\beta }^T\varvec{X}_j\!\Big )}\!\right] ^T \!\right\} n^{1/2}\Big (\hat{\varvec{\beta }}\!-\!\varvec{\beta }_0\Big )\!+ o_p(1) \end{aligned}$$

Each component is asymptotically normal with mean zero. Analytic estimation of the asymptotic variance, however, requires density estimation of the censoring random variable. Alternatively, a stratified bootstrap resampling approach is utilized to estimate the asymptotic variance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heller, G., Mo, Q. Estimating the concordance probability in a survival analysis with a discrete number of risk groups. Lifetime Data Anal 22, 263–279 (2016). https://doi.org/10.1007/s10985-015-9330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9330-3

Keywords

Navigation