Skip to main content

Advertisement

Log in

Aspects of the regulatory mechanisms of PPAR functions: Analysis of a bidirectional response element and regulation by sumoylation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptors (PPARs) constitute a subfamily of nuclear receptor superfamily. A wide variety of compounds including hypolipidemic agents, antidiabetic drugs, and long-chain fatty acids are the potential ligands of PPARs. To approach the regulatory mechanisms of PPARs, we studied on two subjects in this work. First, we identified a functional PPAR-binding site in the spacer region between the PEX11α and perilipin genes, which are arranged in tandem on the mouse genome. By gene reporter assays and in vivo as well as in vitro binding assays, we show that these genes are regulated tissue-selectively through this common binding site: The PEX11α gene is activated by PPARα in the liver, whereas the perilipin gene by PPARγ in the adipose tissue. As the second subject, we found that PPARγ2 is conjugated with small ubiquitin-related modifier (SUMO) at a specific lysine residue in the amino-terminal region. By site-directed mutagenesis combined with gene reporter assays and sumoylation analyses, we show that sumoylation represses the ligand-independent transactivating function carried by this region, and hence negatively regulates the whole transactivating competence of PPARγ2. In addition, phosphorylation at a specific site in the amino-terminal region represses the transactivation by PPARγ2 possibly through enhancing sumoylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr Rev 20: 649–688, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Issemann I, Green S: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650, 1990

    Article  PubMed  CAS  Google Scholar 

  3. Reddy JK, Hashimoto T: Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu Rev Nutr 21: 193–230, 2001

    Article  PubMed  CAS  Google Scholar 

  4. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM: Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774, 1992

    Article  PubMed  CAS  Google Scholar 

  5. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S: The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11: 433–439, 1992

    PubMed  CAS  Google Scholar 

  6. Palmer CN, Hsu MH, Griffin HJ, Johnson EF: Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem 270: 16114–16121, 1995

    Article  PubMed  CAS  Google Scholar 

  7. Osada S, Tsukamoto T, Takiguchi M, Mori M, Osumi T: Identification of an extended half-site motif required for the function of peroxisome proliferator-activated receptor α. Genes Cells 2: 315–327, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B: DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. J Biol Chem 272: 25252–25259, 1997

    CAS  Google Scholar 

  9. Tontonoz P, Hu E, Spiegelman BM: Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79: 1147–1156, 1994

    Article  PubMed  CAS  Google Scholar 

  10. Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ: Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol Cell Biol 20: 5119–5128, 2000

    Article  PubMed  CAS  Google Scholar 

  11. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM: Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113: 159–170, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Lemberger T, Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: A nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Biol 12: 335–363, 1996

    Article  CAS  Google Scholar 

  13. Berger J, Moller DE: The mechanisms of action of PPARs. Annu Rev Med 53: 409–435, 2002

    Article  PubMed  CAS  Google Scholar 

  14. Lehmann JM, Moore LB, Smith OT, Wilkison WO, Willson TM, Kliewer SA: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem 270: 12953–12956, 1995

    Article  PubMed  CAS  Google Scholar 

  15. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA 94: 4318–4323, 1997

    Article  PubMed  CAS  Google Scholar 

  16. Forman BM, Chen J, Evans RM: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA 94: 4312–4317, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M: A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135: 1–3, 1996

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ: PEX11α is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor α-mediated peroxisome proliferation. Mol Cell Biol 22: 8226–8240, 2002

    Article  PubMed  CAS  Google Scholar 

  19. Abe I, Okumoto K, Tamura S, Fujiki Y: Clofibrate-inducible, 28-kDa peroxisomal integral membrane protein is encoded by PEX11. FEBS Lett 431: 468–472, 1998

    Article  PubMed  CAS  Google Scholar 

  20. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ: Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273: 29607–29614, 1998

    Article  PubMed  CAS  Google Scholar 

  21. Passreiter M, Anton M, Lay D, Frank R, Harter C, Wieland FT, Gorgas K, Just WW: Peroxisome biogenesis: Involvement of ARF and coatomer. J Cell Biol 141: 373–383, 1998

    Article  PubMed  CAS  Google Scholar 

  22. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK: Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272: 5128–5132, 1997

    Article  PubMed  CAS  Google Scholar 

  23. Werman A, Hollenberg A, Solanes G, Bjørbæ k C, Vidal-Puig AJ, Flier JS: Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPARγ1 and -2 isoforms and influence of insulin. J Biol Chem 272: 20230–20235, 1997

    Article  PubMed  CAS  Google Scholar 

  24. Hu E, Kim JB, Sarraf P, Spiegelman BM: Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274: 2100–2103, 1996

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu M, Takeshita A, Tsukamoto T, Gonzalez FJ, Osumi T: Tissue-selective, bidirectional regulation of PEX11α and perilipin genes through a common peroxisome proliferator response element. Mol Cell Biol 24: 1313–1323, 2004

    Article  PubMed  CAS  Google Scholar 

  26. Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T: The transactivating function of peroxisome proliferator-activated receptor γ is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells 9: 1017–1029, 2004

    Article  PubMed  CAS  Google Scholar 

  27. Hi R, Osada S, Yumoto N, Osumi T: Characterization of the amino-terminal activation domain of peroxisome proliferator-activated receptor α. Importance of α-helical structure in the transactivating function. J Biol Chem 274: 35152–35158, 1999

    Article  PubMed  CAS  Google Scholar 

  28. Sambrook J, Fritsch, EF, Maniatis T: Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: cold Spring Harbor Laboratory Press. p. 16.32–16.36, 1989

  29. Tominaga S, Morikawa M, Osumi T: Growth hormone has dual stage-specific effects on the differentiation of 3T3-L1 preadipocytes. J Biochem (Tokyo) 132: 881–889, 2002

    CAS  Google Scholar 

  30. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C: Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266: 11341–11346, 1991

    PubMed  CAS  Google Scholar 

  31. Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C: Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and leydig cells. J Biol Chem 270: 16970–16973, 1995

    Article  PubMed  CAS  Google Scholar 

  32. Clifford GM, Londos C, Kraemer FB, Vernon RG, Yeaman SJ: Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes. J Biol Chem 275: 5011–5015, 2000

    Article  PubMed  CAS  Google Scholar 

  33. Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C: Perilipin a is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161: 1093–1103, 2003

    Article  PubMed  CAS  Google Scholar 

  34. Seeler JS, Dejean A: Nuclear and unclear functions of sumo. Nat Rev Mol Cell Biol 4: 690–699, 2003

    Article  PubMed  CAS  Google Scholar 

  35. Gill G: Post-translational modification by the small ubiquitin-related modifier sumo has big effects on transcription factor activity. Curr Opin Genet Dev 13: 108–113, 2003

    Article  PubMed  CAS  Google Scholar 

  36. Verger A, Perdomo J, Crossley M: Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4: 137–142, 2003

    CAS  Google Scholar 

  37. Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR: Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339: 953–959, 1998

    Article  PubMed  CAS  Google Scholar 

  38. Adachi N, Lieber MR: Bidirectional gene organization: a common architectural feature of the human genome. Cell 109: 807–809, 2002

    Article  PubMed  CAS  Google Scholar 

  39. Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R: The peroxisome proliferator-activated receptor γ regulates expression of the perilipin gene in adipocytes. J Biol Chem 279: 10070–10076, 2004

    Article  PubMed  CAS  Google Scholar 

  40. Dalen KT, Schoonjans K, Ulven SM, Weedon-Fekjaer MS, Bentzen TG, Koutnikova H, Auwerx J, Nebb HI: Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-γ. Diabetes 53: 1243–1252, 2004

    Article  PubMed  CAS  Google Scholar 

  41. Nagai S, Shimizu C, Umetsu M, Taniguchi S, Endo M, Miyoshi H, Yoshioka N, Kubo M, Koike T: Identification of a functional peroxisome proliferator-activated receptor responsive element within the murine perilipin gene. Endocrinology 145: 2346–2356, 2004

    Article  PubMed  CAS  Google Scholar 

  42. Ohshima T, Koga H, Shimotohno K: Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279: 29551–29557, 2004

    Article  PubMed  CAS  Google Scholar 

  43. Floyd ZE, Stephens JM: Control of peroxisome proliferator-activated receptor γ2 stability and activity by sumoylation. Obes Res 12: 921–928, 2004

    Article  PubMed  CAS  Google Scholar 

  44. Osumi T, Wen JK, Hashimoto T: Two cis-acting regulatory sequences in the peroxisome proliferator-responsive enhancer region of rat acyl-CoA oxidase gene. Biochem Biophys Res Commun 175: 866–871, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Osumi.

Additional information

MS and DY equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, M., Yamashita, D., Yamaguchi, T. et al. Aspects of the regulatory mechanisms of PPAR functions: Analysis of a bidirectional response element and regulation by sumoylation. Mol Cell Biochem 286, 33–42 (2006). https://doi.org/10.1007/s11010-005-9052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9052-z

Key words

Navigation