Skip to main content
Log in

DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NAT10 (N-acetyltransferase 10) is a protein with histone acetylation activity and primarily identified to be involved in regulation of telomerase activity. The presented research shows its transcriptional activation by genotoxic agents and possible role in DNA damage. NAT10 mRNA could be markedly increased by using hydrogen peroxide (H2O2) or cisplatin in a dose- and time-dependent way, and the immunofluorescent staining revealed that the treatment of H2O2 or cisplatin induced focal accumulation of NAT10 protein in cellular nuclei. Both H2O2 and cisplatin could stimulate the transcriptional activity of the NAT10 promoter through the upstream sequences from −615 bp to +110 bp, with which some nuclear proteins interacted. Ectopic expression of NAT10 could enhance the number of survival cells in the presence of H2O2 or cisplatin. The above results suggested that NAT10 could be involved in DNA damage response and increased cellular resistance to genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lv JJ, Liu HJ, Wang Q, Tang ZW, Hou L, Zhang B (2003) Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Bioche Biophy Res Commun 311:506–513

    Article  Google Scholar 

  2. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  PubMed  CAS  Google Scholar 

  3. Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419:411–415

    Article  PubMed  CAS  Google Scholar 

  4. Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22:8353–8365

    Article  PubMed  CAS  Google Scholar 

  5. Le Masson I, Yu DY, Jensen K, Chevalier A, Courbeyrette R, Boulard Y, Smith MM, Mann C (2003) Yaf9, a novel NuA4 histone acetyltransferase subunit, is required for the cellular response to spindle stress in yeast. Mol Cell Biol 23:6086–6102

    Article  PubMed  CAS  Google Scholar 

  6. Viscardi V, Clerici M, Cartagena-Lirola H, Longhese MP (2005) Telomeres and DNA damage checkpoints. Biochimie 87:613–624

    Article  PubMed  CAS  Google Scholar 

  7. Greenberg RA (2005) Telomeres, crisis and cancer. Curr Mol Med 5:213–218

    Article  PubMed  CAS  Google Scholar 

  8. Pandita TK (2002) ATM function and telomere stability. Oncogene 21:611–618

    Article  PubMed  CAS  Google Scholar 

  9. Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB, Ganesan S, Lansdorp PM, Collins K, Hahn WC (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 7:8222–8227

    Article  Google Scholar 

  10. Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S,Gandhi V, Iliakis G, Shay JW, Young CS, Pandita TK (2003) hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22:131–146

    Article  PubMed  CAS  Google Scholar 

  11. Matte MA-D, Cheng J, Kruk P (2001) Ultraviolet irradiation- and dimethyl sulfoxide-induced telomerase activity in ovarian epithelial cell lines. Exp Cell Res 267:13–27

    Article  Google Scholar 

  12. Pandita TK, Rotiroti JL (2003) Role of telomerase in radiocurability (Review). Oncol Rep 10:263–270

    Google Scholar 

  13. Burdon RH, Gill V, Boyd PA, Rahim RA (1996) Hydrogen peroxide and sequence-specific DNA damage in human cells. FEBS Lett 383:150–154

    Article  PubMed  CAS  Google Scholar 

  14. Wozniak K, Blasiak J (2002) Recognition and repair of DNA-cisplatin adducts. Acta Biochim Pol 49:583–596

    PubMed  CAS  Google Scholar 

  15. Hovest MG, Bruggenolte N, Hosseini KS, Krieg T, Herrmann G (2006) Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres. Mol Biol Cell 17:1758–1767

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez-Capetillo O, Celeste A, Nussenzweig A (2003) Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2:426–427

    PubMed  CAS  Google Scholar 

  17. Fan NC, Peng C, Krisinger J, Leung PC (1995) The human gonadotropin-releasing hormone receptor gene: complete structure including multiple promoters, transcription initiation sites, and polyadenylation signals. Mol Cell Endocrinol 107:R1–R8

    Article  PubMed  CAS  Google Scholar 

  18. Bassett CL, Nickerson ML, Farrell RE Jr, Harrison M (2004) Multiple transcripts of a gene for a leucine-rich repeat receptor kinase from morning glory (Ipomoea nil) originate from different TATA boxes in a tissue-specific manner. Mol Genet Genomics 271:752–760

    Article  PubMed  CAS  Google Scholar 

  19. Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schroder HD, Kassem M (2005) Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 65:3126–3135

    PubMed  CAS  Google Scholar 

  20. Zhang X, Chen Z, Chen Y, Tong T (2003) Delivering antisense telomerase RNA by a hybrid adenovirus/adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells. Oncogene 22:2405–2416

    Article  PubMed  CAS  Google Scholar 

  21. Akiyama M, Yamada O, Kanda N, Akita S, Kawano T, Ohno T, Mizoguchi H, Eto Y, Anderson KC, Yamada H (2002) Telomerase overexpression in K562 leukemia cells protects against apoptosis by serum deprivation and double-stranded DNA break inducing agents, but not against DNA synthesis inhibitors. Cancer Lett 178:187–197

    Article  PubMed  CAS  Google Scholar 

  22. Xu D, Wang Q, Gruber A, Bjorkholm M, Chen Z, Zaid A, Selivanova G, Peterson C, Wiman KG, Pisa P (2002) Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19:5123–5133

    Article  Google Scholar 

  23. Xiong J, Fan S, Meng Q, Schramm L, Wang C, Bouzahza B, Zhou J, Zafonte B, Goldberg ID, Haddad BR, Pestell RG, Rosen EM (2003) BRCA1 inhibition of telomerase activity in cultured cells. Mol Cell Biol 23:8668–8690

    Article  PubMed  CAS  Google Scholar 

  24. Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant No. 30570691), Doctors Program of Chinese Education Ministry (20040001147), and a grant from the center of human genetic disease, Peking University. We thank Dr. Jan SjÖberg for editing the manuscript in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Ling, Y., Gong, Y. et al. DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation. Mol Cell Biochem 300, 249–258 (2007). https://doi.org/10.1007/s11010-006-9390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9390-5

Keywords

Navigation