Skip to main content

Advertisement

Log in

Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A total of 40 human brain tumor samples were analyzed for tumor-specific alterations at the RB1 gene locus. Gliomas were more prevalent in younger males and meningiomas in older females. Southern blot analysis revealed loss of heterozygosity (LOH) at the intron 1 locus of RB1 gene in 19.4% of informative cases and this is the first report showing LOH at this locus in human brain tumors. Levels of RB1 mRNA and protein, pRb, and the percentage of hyperphosphorylated form of pRb were also analyzed in these tumors. Normal human fibroblast cell line WI38 was used as control in northern and western analysis. Normal sized RB1 mRNA and protein were present in all the tumor samples. Majority of the gliomas had 2.0-fold or higher levels of RB1 mRNA and most meningiomas had less than 2.0-fold of RB1 mRNA compared to control WI38 cells. The total pRb levels were 2.0-fold or higher in all the tumor samples compared to control. More than 50% of pRb existed in hyperphosphorylated form in all gliomas except two. However, six out of 13 meningiomas had less than 50% of total pRb in the hyperphosphorylated form. These results indicate that the increased percentage of hyperphosphorylated form of pRb in gliomas could provide growth advantage to these tumors. Presence of LOH at the RB1 gene locus and the increased levels of RB1 RNA and protein and increased percentage of hyperphosphorylated form of pRb are indicative of an overall deregulation of pRb pathway in human brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeAngelis LM (2001) Brain tumors. N Eng J Med 344:114–123

    Article  CAS  Google Scholar 

  2. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavanee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225

    PubMed  Google Scholar 

  3. Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR (1998) Brain tumor survival: results from the National Cancer Data Base. J Neuro-Oncol 40:151–160

    Article  CAS  Google Scholar 

  4. Herwig S, Strauss M (1997) The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem 246:581–601

    Article  PubMed  CAS  Google Scholar 

  5. Jacks T, Weinberg RA (1998) The expanding role of cell cycle regulators. Science 280:1035–1036

    Article  PubMed  CAS  Google Scholar 

  6. Slack RS, El-Bizri H, Wong J, Belliveau DJ, Miller FD (1998) A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J Cell Biol 140:1497–509

    Article  PubMed  CAS  Google Scholar 

  7. Taya Y (1997) RB kinases and RB-binding proteins: new points of view. TIBS 22:14017

    Google Scholar 

  8. Classon M, Harlow E (2002) The retinoblastoma tumor suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54:6321–6324

    PubMed  CAS  Google Scholar 

  10. Roesch A, Becker B, Meyer S, Hafner C, Wild PJ, Landthaler M, Vogt T (2005) Overexpression and hyperphosphorylation of retinoblastoma protein in the progression of malignant melanoma. Mod Pathol 18:565–572

    Article  PubMed  CAS  Google Scholar 

  11. Henson JW, Schnitker BL, Correa KM, von Deimling A, Fassbender F, Xu HJ, Benedict WF, Yandell DW, Louis DN (1994) The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol 36:714–721

    Article  PubMed  CAS  Google Scholar 

  12. Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW, Dryja TP (1993) Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics 17:535–543

    Article  PubMed  CAS  Google Scholar 

  13. Thomas R, Antony Herold Prabhu PD, Mathivanan J, Rohini, Sivakumar D, Jayakumar PN, Indira Devi B, Satish S, Sastry KVR, Gope R (2005) Altered structure and expression of RB1 gene and increased phosphorylation of pRb in human vestibular schwannomas. Mol Cell Biochem 271:113–121

    Article  PubMed  CAS  Google Scholar 

  14. Gope ML, Chun M, Gope R (1991) Comparative study of the expression of Rb and p53 genes in human colorectal cancers, colon carcinoma cell lines and synchronized human fibroblasts. Mol Cell Biochem 107:55–63

    Article  PubMed  CAS  Google Scholar 

  15. Gope R, Gope ML (1992) Abundance and state of phosphorylation of the retinoblastoma susceptibility gene product in human colon cancer. Mol Cell Biochem 110:123–133

    Article  PubMed  CAS  Google Scholar 

  16. Ma D, Zhou P, Harbour JW (2003) Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J Biol Chem 278:19358–19366

    Article  PubMed  CAS  Google Scholar 

  17. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  18. Sklar CA (2002) Childhood brain tumors. J Pediatr Endocrinol Metab Suppl 2:669–673

    Google Scholar 

  19. Kallio M, Sankila R, Jaaskelainen J, Karjalainen S, Hakulinen T (1991) A population-based study on the incidence and survival rates of 3857 glioma patients diagnosed from 1953 to 1984. Cancer 68:1394–1400

    Article  PubMed  CAS  Google Scholar 

  20. Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA (2005) Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 15:43–49

    Article  PubMed  CAS  Google Scholar 

  21. Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61:3230–3239

    PubMed  CAS  Google Scholar 

  22. Malkinson AM, You M (1994) The intronic structure of cancer-related genes regulates susceptibility to cancer. Mol Carcinog 10:61–65

    Article  PubMed  CAS  Google Scholar 

  23. Dayalan AHPP, Mathivanan J, Rohini K, Thomas R, Gope ML, Subbakrishna KD, Sampath S, Praharaj SS, Chandramouli BA, Gope R (2006) Age dependent phosphorylation and deregulation of p53 human vestibular schwannomas. Mol Carcinogenesis 45:38–46

    Article  CAS  Google Scholar 

  24. Borg A, Zhang QX, Alm P, Olsson H, Sellberg G (1992) The retinoblastoma gene in breast cancer: allele loss is not correlated with loss of gene protein expression. Cancer Res 52:2991–2994

    PubMed  CAS  Google Scholar 

  25. Roy SW, Gilbert W (2005) The pattern of intron loss. Proc Natl Acad Sci USA 102:713–718

    Article  PubMed  CAS  Google Scholar 

  26. Koshiji M, Yonekura Y, Saito T, Sakaida N, Uemura Y, Yoshioka K (2002) Genetic alterations in normal epithelium of colorectal cancer patients may be a useful indicator for subsequent metachronous tumor development. Ann Surg Oncol 9:580–586

    Article  PubMed  Google Scholar 

  27. Forsti A, Louhelainen J, Soderberg M, Wijkstrom H, Hemminki K. (2001) Loss of heterozygosity in tumour-adjacent normal tissue of breast and bladder cancer. Eur J Cancer 37:1372–1380

    Article  PubMed  CAS  Google Scholar 

  28. Malins DC, Gilman NK, Green VM, Wheeler TM, Barker EA, Vinson MA, Sayeeduddin M, Hellstrom KE, Anderson KM (2004) Metastatic cancer DNA phenotype identified in normal tissues surrounding metastasizing prostate carcinomas. Proc Natl Acad Sci USA 101:11428–11431

    Article  PubMed  CAS  Google Scholar 

  29. Stoyanova R, Clapper ML, Bellacosa A, Henske EP, Testa JR, Ross EA, Yeung AT, Nicolas E, Tsichlis N, Li YS, Linehan WM, Howard S, Campbell KS, Godwin AK, Boman BM, Crowell JA, Kopelovich L, Knudson AG (2004) Altered gene expression in phenotypically normal renal cells from carriers of tumor suppressor gene mutations. Cancer Biol Ther 3:1313–1321

    Article  PubMed  CAS  Google Scholar 

  30. Woloschak M, Yu A, Xiao J, Post KD (1996) Abundance and state of phosphorylation of the retinoblastoma gene product in human pituitary tumors. Int J Cancer 67:16–19

    Article  PubMed  CAS  Google Scholar 

  31. Haas-Kogan DA, Kogan SC, Levi D, Dazin P, T’Ang A, Fung YK, Israel MA (1995) Inhibition of apoptosis by the retinoblastoma gene product. EMBO J 14:461–472

    PubMed  CAS  Google Scholar 

  32. Haupt Y, Rowan S, Oren M (1995) p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene 10:1563–1571

    PubMed  CAS  Google Scholar 

  33. Morgenbesser SD, Williams BO, Jacks T, DePinho RA (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371:21–22

    Article  Google Scholar 

  34. Adegbola O, Pasternack GR (2005) Phosphorylated retinoblastoma protein complexes with pp32 and inhibits pp32-mediated apoptosis. J Biol Chem 280:15497–15502

    Article  PubMed  CAS  Google Scholar 

  35. Halaban R (2005) Rb/E2F: a two-edged sword in the melanocytic system. Cancer Metastasis Rev 24:339–356

    Article  PubMed  CAS  Google Scholar 

  36. Wang RH, Liu CW, Avramis VI, Berndt N (2001) Protein phosphatase 1alpha-mediated stimulation of apoptosis is associated with dephosphorylation of the retinoblastoma protein. Oncogene 20:6111–6122

    Article  PubMed  CAS  Google Scholar 

  37. Berthet C, Kaldis P (2006) Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Div 1:10

    Article  PubMed  CAS  Google Scholar 

  38. Wallace M, Coates PJ, Wright EG, Ball KL (2001) Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo. Oncogene 20:3597–3608

    Article  PubMed  CAS  Google Scholar 

  39. Rassidakis GZ, Lai R, Herling M, Cromwell C, Schmitt-Graeff A, Medeiros LJ (2004) Retinoblastoma protein is frequently absent or phosphorylated in anaplastic large-cell lymphoma. Am J Pathol 164:2259–2267

    PubMed  CAS  Google Scholar 

  40. Nagano K, Itagaki C, Izumi T, Nunomura K, Soda Y, Tani K, Takahashi N, Takenawa T, Isobe T (2006) Rb plays a role in survival of Abl-dependent human tumor cells as a downstream effector of Abl tyrosine kinase. Oncogene 25:493–502

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We Thank Dr. T.P. Dryja Department of Ophthalmology, Harvard Medical School for the plasmids p123M1.8 and p4.95BT. We thank Dr. B.A. Chandramouli, Dr. S. Sampath and Dr. B. Indira Devi, Department of Neurosurgery, NIMHANS, for providing some of the surgical tumor tissues. We thank Dr. D.K. Subbakrishna, Department of Biostatistics, NIMHANS, for statistical analysis of the data. We thank Dr. A.H.P.P. Dayalan, Department of Human Genetics, NIMHANS, for his help with some of the experiments. JM and RK are recipients of Senior Research Fellowship from University Grant Commission, Government of India. The infrastructure was provided by the Department of Biotechnology (DBT), Government of India (grant awarded to RG, project No. BT/PRO 703/09/133/97) and by Life Sciences Research Board (LSRB), Government of India (grant awarded to RG, project No. DBA/48222/c/RD-81). This work is toward the partial fulfillment of Ph.D. degree for JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajalakshmi Gope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathivanan, J., Rohini, K., Gope, M.L. et al. Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors. Mol Cell Biochem 302, 67–77 (2007). https://doi.org/10.1007/s11010-007-9428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9428-3

Keywords

Navigation