Skip to main content
Log in

Macrophage inflammatory protein-1α (MIP-1α) enhances a receptor activator of nuclear factor κB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Osteolytic lesions are rapidly progressive during the terminal stages of myeloma, and the bone pain or bone fracture that occurs at these lesions decreases the patients’ quality of life to a notable degree. In relation to the etiology of this bone destruction, it has been reported recently that MIP-1α, produced in large amounts in myeloma patients, acts indirectly on osteoclastic precursor cells, and activates osteoclasts by way of bone-marrow stromal cells or osteoblasts, although the details of this process remain obscure. In the present study, our group investigated the mechanism by which RANKL expression is induced by MIP-1α and the effects of MIP-1α on the activation of osteoclasts. RANKL mRNA and RANKL protein expressions increased in both ST2 cells and MC3T3–E1 cells in a MIP-1α concentration-dependent manner. RANKL mRNA expression began to increase at 1 h after the addition of MIP-1α; the increase became remarkable at 2 h, and continuous expression was observed subsequently. Both ST2 and MC3T3-E1 cells showed similar levels of increased RANKL protein expression at 1, 2, and 3 days after the addition of MIP-1α. After the addition of MIP-1α, the amount of phosphorylated ERK1/2 and Akt protein expressions showed an increase, as compared to the corresponding amount in the control group. On the other hand, the amount of phosphorylated p38MAPK protein expression showed a decrease from the amount in the control group after the addition of MIP-1α. U0126 (a MEK1/2 inhibitor) or LY294002 (a PI3K inhibitor) was added to ST2 and MC3T3-E1 cells, and was found to inhibit RANKL mRNA and RANKL protein expression in these cells. When SB203580, a p38MAPK inhibitor, was added, RANKL mRNA and RANKL protein expression were increased in these cells. MIP-1α was found to promote osteoclastic differentiation of C7 cells, an osteoclastic precursor cell line, in a MIP-1α concentration-dependent manner. MIP-1α promoted differentiation into osteoclasts more extensively in C7 cells incubated together with ST2 and MC3T3-E1 cells than in C7 cells incubated alone. These results suggested that MIP-1α directly acts on the osteoclastic precursor cells and induces osteoclastic differentiation. This substance also indirectly induces osteoclastic differentiation through the promotion of RANKL expression in bone-marrow stromal cells and osteoblasts. The findings of this investigation suggested that activation of the MEK/ERK and the PI3K/Akt pathways and inhibition of p38MAPK pathway were involved in RANKL expression induced by MIP-1α in bone-marrow stromal cells and osteoblasts. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun 256:449–455

    Article  PubMed  CAS  Google Scholar 

  2. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T (1999) Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25:517–523

    Article  PubMed  CAS  Google Scholar 

  3. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  4. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98:11581–11586

    Article  PubMed  CAS  Google Scholar 

  5. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533

    Article  PubMed  CAS  Google Scholar 

  6. Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijizen A, Brabbs AC, van Beek EJ, Holen I, Skerry TM, Dunstan CR, Russell GR, Van Camp B, Vanderkerken K (2001) Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98:3534–3540

    Article  PubMed  CAS  Google Scholar 

  7. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D, Matsumoto T (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100:2195–2202

    PubMed  CAS  Google Scholar 

  8. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97:3349–3353

    Article  PubMed  CAS  Google Scholar 

  9. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, Suda T, Takahashi N (2002) p38MAPK MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143:3105–3113

    Article  PubMed  CAS  Google Scholar 

  10. Nishida S, Tsubaki M, Hoshino M, Namimatsu A, Uji H, Yoshioka S, Tanimori Y, Yanae M, Iwaki M, Irimajiri K (2005) Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2. Biochem Biophys Res Commun 328:91–97

    Article  PubMed  CAS  Google Scholar 

  11. Miyamoto A, Kunisada T, Hemmi H, Yamane T, Yasuda H, Miyake K, Yamazaki H, Hayashi SI (1998) Establishment and characterization of an immortal macrophage-like cell line inducible to differentiate to osteoclasts. Biochem Biophys Res Commun 242:703–709

    Article  PubMed  CAS  Google Scholar 

  12. Politou M, Terpos E, Anagnostopoulos A, Szydlo R, Laffan M, Layton M, Apperley JF, Dimopoulos MA, Rahemtulla A (2004) Role of receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin and macrophage protein 1-alpha (MIP-1a) in monoclonal gammopathy of undetermined significance (MGUS). Br J Haematol 126:686–689

    Article  PubMed  CAS  Google Scholar 

  13. Takami M, Takahashi N, Udagawa N, Miyaura C, Suda K, Woo JT, Martin TJ, Nagai K, Suda T (2000) Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in osteoblasts. Endocrinology 141:4711–4719

    Article  PubMed  CAS  Google Scholar 

  14. Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekine K, Kato S, Matsumoto T, Fujita T (1999) Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology 140:1005–1008

    Article  PubMed  CAS  Google Scholar 

  15. O'Brien CA, Lin SC, Bellido T, Manolagas SC (2000) Expression levels of gp130 in bone marrow stromal cells determine the magnitude of osteoclastogenic signals generated by IL-6-type cytokines. J Cell Biochem 79:532–541

    Article  PubMed  Google Scholar 

  16. O'Brien CA, Gubrij I, Lin SC, Saylors RL, Manolagas SC (1999) STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J Biol Chem 274:19301–19308

    Article  PubMed  Google Scholar 

  17. Fu Q, Jilka RL, Manolagas SC, O'Brien CA (2002) Parathyroid hormone stimulates receptor activator of NF-kappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J Biol Chem 277:48868–48875

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Okada Y, Pilbeam CC, Lorenzo JA, Kennedy CR, Breyer RM, Raisz LG (2000) Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology 141:2054–2061

    Article  PubMed  CAS  Google Scholar 

  19. Kim YH, Kim JM, Kim SN, Kim GS, Baek JH (2003) p44/42 MAPK activation is necessary for receptor activator of nuclear factor-kappaB ligand induction by high extracellular calcium. Biochem Biophys Res Commun 304:729–735

    Article  PubMed  CAS  Google Scholar 

  20. Li F, Chung H, Reddy SV, Lu G, Kurihara N, Zhao AZ, Roodman GD (2005) Annexin II stimulates RANKL expression through MAPK. J Bone Miner Res 20:1161–1167

    Article  PubMed  CAS  Google Scholar 

  21. Okamatsu Y, Kim D, Battaglino R, Sasaki H, Spate U, Stashenko P (2004) MIP-1 gamma promotes receptor-activator-of-NF-kappaB-ligand-induced osteoclast formation and survival. J Immunol 173:2084–2090

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hayashi, Department of Immunology, School of Life Science, Faculty of Medicine, Tottori University, for providing C7 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shozo Nishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsubaki, M., Kato, C., Manno, M. et al. Macrophage inflammatory protein-1α (MIP-1α) enhances a receptor activator of nuclear factor κB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 304, 53–60 (2007). https://doi.org/10.1007/s11010-007-9485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9485-7

Keywords

Navigation