Skip to main content
Log in

Suppression of NF-κB and IRF-1-induced transcription of the murine IL-12 p40 by transforming growth factor-β Smad pathway in macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we have characterized the negative regulation of the IL-12 p40 expression by TGF-β in macrophages. Although murine IL-12 p40 promoter contains a putative TGF-β inhibitory element (TIE), neither mutation nor deletion of the TIE had any effect on the inhibitory activity of TGF-β. The NF-κB p65 and interferon regulatory factor (IRF)-1 induced promoter activity was suppressed by the expression of a constitutively active TGF-β type I receptor in the presence of Smad3 and Smad4, which was abrogated by expression of an inhibitory Smad, Smad7. Transcription of a reporter gene containing three copies of both NF-κB and IRF-1 elements from the IL-12 p40 promoter was significantly repressed by activation of Smad-dependent TGF-β pathway. In contrast, reporter containing three copies of either the NF-κB or IRF-1 sites was not affected by TGF-β-Smad pathway. These findings indicated that both the NF-κB and IRF-1 sites are required for the repression of promoter activity of IL-12 p40 by TGF-β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:496–497

    Article  Google Scholar 

  2. Gubler U, Chua AO, Schoenhaut DS, Dwyer CM, McComas W, Motyka R, Nabavi N, Wolitzky AG, Quinn PM, Familletti PC, Gately M (1991) Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci USA 88:4143–4147

    Article  PubMed  CAS  Google Scholar 

  3. D’Andrea A, Rengaraju M, Valiante NM, Chehimi J, Kubin M, Aste M, Chan SH, Kobayashi M, Young D, Nickbarg E, Chizzonite R, Wolf SF, Trinchieri G (1992) Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 176:1387–1398

    Article  PubMed  CAS  Google Scholar 

  4. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, Presky DH (1998) The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 16:495–521

    Article  PubMed  CAS  Google Scholar 

  5. Trinchieri G (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 70:83–243

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF) a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845

    Article  PubMed  CAS  Google Scholar 

  7. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, Dzialo R, Trinchieri G (1996) The interleukin 12 p40 gene promoter is primed by interferon γ in monocytic cells. J Exp Med 183:147–157

    Article  PubMed  CAS  Google Scholar 

  8. Du C, Sriram S (1998) Mechanism of inhibition of LPS-induced IL-12 p40 production by IL-10 and TGF-β in ANA-1 cells. J Leukoc Biol 64:92–97

    PubMed  CAS  Google Scholar 

  9. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  PubMed  CAS  Google Scholar 

  10. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-β receptor. Nature 370:341–347

    Article  PubMed  CAS  Google Scholar 

  11. Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J Biol Chem 272:28107–28115

    Article  PubMed  CAS  Google Scholar 

  12. Lagna G, Hata A, Hemmati-Brivanlou A, Massague J (1996) Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383:832–836

    Article  PubMed  CAS  Google Scholar 

  13. Massague J, Wotton D (2000) Transcriptional control by the TGF-β/Smad signaling system. EMBO J 19:1745–1754

    Article  PubMed  CAS  Google Scholar 

  14. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617

    Article  PubMed  CAS  Google Scholar 

  15. Jonk LJC, Itoh S, Heldin CH, ten Dijke P, Kruijer W (1998) Identification and functional characterization of a smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β activin and bone morphogenetic protein-inducible enhancer. J Biol Chem 1273:21145–21152

    Article  Google Scholar 

  16. Nagarajan RP, Zhang J, Li W, Chen Y (1999) Regulation of smad7 promoter by direct association with smad3 and smad4. J Biol Chem 274:33412–33418

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa K, Chen F, Kim YJ, Chen Y (2003) Transcriptional regulation of tristetraprolin by transforming growth factor-β in human T cells. J Biol Chem 278:30373–30381

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa K, Funaba M, Mathews LS, Mizutani T (2000) Activin A stimulates type IV collagenase (matrix metalloproteinase-2) production in mouse peritoneal macrophages. J Immunol 165:2997–3003

    PubMed  CAS  Google Scholar 

  19. Murphy TL, Cleveland MG, Kulesza P, Magram J, Murphy KM (1995) Regulation of interleukin 12 p40 expression through an NF-κB half-site. Mol Cell Biol 15: 5258–5267

    PubMed  CAS  Google Scholar 

  20. Stein B, Baldwin AS Jr, Ballard DW, Greene WC, Angel P, Herrlich P (1993) Cross-coupling of the NF-κB p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12:3879–3891

    PubMed  CAS  Google Scholar 

  21. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639

    PubMed  CAS  Google Scholar 

  22. Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H, Chen Y (2000) Repression of transforming-growth-factor-β-mediated transcription by nuclear factor-κB. Biochem J 348:591–596

    Article  PubMed  CAS  Google Scholar 

  23. Kerr LD, Miller DB, Matrisian LM (1990) TGF-β1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell 6:267–278

    Article  Google Scholar 

  24. Ruben SM, Narayanan R, Klement JF, Chen CH, Rosen CA (1992) Functional characterization of the NF-κB p65 transcriptional activator and an alternatively spliced derivative. Mol Cell Biol 12:444–454

    PubMed  CAS  Google Scholar 

  25. Maruyama S, Sumita K, Shen H, Kanoh M, Xu X, Sato M, Matsumoto M, Shinomiya H, Asano Y (2003) Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter. J Immunol 170:997–1001

    PubMed  CAS  Google Scholar 

  26. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89:1165–1173

    Article  PubMed  CAS  Google Scholar 

  27. White LA, Mitchell TI, Brinckerhoff CE (2000) Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim Biophys Acta 1490:259–268

    PubMed  CAS  Google Scholar 

  28. Yuan W, Varga J (2001) Transforming growth factor-β repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 276:38502–38510

    Article  PubMed  CAS  Google Scholar 

  29. Ogawa K, Chen F, Kuang C, Chen Y (2004) Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-β is mediated by a nuclear factor-κB site. Biochem J 381:413–422

    Article  PubMed  CAS  Google Scholar 

  30. Lopez-Rovira T, Chalaux E, Rosa JL, Bartrons R, Ventura F (2000) Interaction and functional cooperation of NF-κB with Smads transcriptional regulation of the junB promoter. J Biol Chem 275:28937–28946

    Article  PubMed  CAS  Google Scholar 

  31. Letterio JL, Roberts AB (1998) Regulation of immune responses by TGF-β. Annu Rev Immunol 16:137–161

    Article  PubMed  CAS  Google Scholar 

  32. Schmitt E, Hoehn P, Huels C, Goedert S, Palm N, Rude E, Germann T (1994) T helper type I development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-g and is inhibited by transforming growth factor-β. Eur J Immunol 24:793–798

    Article  PubMed  CAS  Google Scholar 

  33. Xiao BG, Zhang GX, Ma CG, Link H (1996) Transforming growth factor-b1 (TGF-β1)-mediated inhibition of glial cell proliferation and down-regulation of intercellular adhesion molecule-1 (ICAM-1) are interrupted by interferon-γ (IFN-γ). Clin Exp Immunol 103:475–481

    Article  PubMed  CAS  Google Scholar 

  34. Ulloa L, Doody J, Massague J (1999) Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397:710–713

    Article  PubMed  CAS  Google Scholar 

  35. Sumiyoshi K, Nakao A, Setoguchi Y, Tsuboi R, Okumura K, Ogawa H (2003) TGF-β/Smad signaling inhibits IFN-γ and TNF-α-induced TARC (CCL17) production in HaCa T cells. J Dermatol Sci 31:53–58

    Article  PubMed  CAS  Google Scholar 

  36. Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F (2003) X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Biol 10:922–927

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (18580300) from Japan Society for the Promotion of Science and a grant for Chemical Biology Research Program from RIKEN (to K.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, K., Funaba, M. & Tsujimoto, M. Suppression of NF-κB and IRF-1-induced transcription of the murine IL-12 p40 by transforming growth factor-β Smad pathway in macrophages. Mol Cell Biochem 308, 9–15 (2008). https://doi.org/10.1007/s11010-007-9605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9605-4

Keywords

Navigation