Skip to main content
Log in

Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Silymarin is a naturally available bioflavonoid and is a strong antioxidant with a capacity to inhibit the formation of tumors in several cancer models. In the present study, we investigated whether dietary supplementation of silymarin has any role in lipid components, lipid-metabolizing enzymes, free fatty acid profile, and expression of cyclooxygenase-2 (COX-2) in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma in rats. NDEA-induced rats showed severe hyperlipidemia along with upregulated expression of COX-2 as revealed by western blotting and immunohistochemistry. Dietary silymarin supplementation attenuated this hyperlipidemia and downregulated the expression of COX-2. Thus we conclude that compounds like silymarin with potent hypolipidemic effect are strong candidates as chemopreventive agents for the treatment of liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ward E et al (2005) Cancer statistics. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  2. Leong TYM, Leong ASY (2005) Epidemiology and carcinogenesis of hepatocellular carcinoma. HPB 7:5–15

    PubMed  Google Scholar 

  3. Chang CK, Astrakianakis G, Thomas DB et al (2006) Occupational exposures and risks of liver cancer among Shanghai female textile workers—a case-cohort study. Int J Epidemiol 35:361–369

    Article  PubMed  Google Scholar 

  4. Yamamoto J, Kosuge T, Takayama T et al (1996) Recurrence of hepatocellular carcinoma after surgery. Br J Surg 83:1219–1222

    Article  PubMed  CAS  Google Scholar 

  5. Ramakrishnan G, Raghavendran HRB, Vinodhkumar R, Devaki T (2006) Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chem Biol Interact 161:104–114

    Article  PubMed  CAS  Google Scholar 

  6. Mittal G, Brar APS, Soni G (2006) Impact of hypercholestrolemia on toxicity of N-nitrosodiethylamine: biochemical and histopathological effects. Pharmacol Rep 58(3):413–419

    PubMed  CAS  Google Scholar 

  7. Liao DJ, Blanck A, Eneroth P, Gustafsson JA, Hällström IP (2001) Diethylnitrosamine causes pituitary damage, disturbs hormone levels and reduces sexual dimorphism of certain liver functions in the rat. Environ Health Perspect 109:943–947

    Article  PubMed  CAS  Google Scholar 

  8. IARC (1971) Monograph on the evaluation of carcinogenic risk of chemicals to man, vol 1. International Agency for Research on Cancer, Lyon, pp 107–124

    Google Scholar 

  9. Yanaida Y, Kohno H, Yoshida K et al (2002) Dietary silymarin suppresses 4-nitroquinoline 1-oxide induced tongue carcinogenesis in male F344 rats. Carcinogenesis 23(5):787–794

    Article  PubMed  CAS  Google Scholar 

  10. Pradeep K, Mohan CVR, Gobianand K, Karthikeyan S (2007) Silymarin modulates the oxidant-antioxidant imbalance during diethylnitrosamine induced oxidative stress in rats. Eur J Pharmacol 560:110–116

    Article  PubMed  CAS  Google Scholar 

  11. Jiang J, Ehle PN, Xu N (2006) Influence of liver cancer on lipid and lipoprotein metabolism (review). Lipids Health Dis 5:4

    Article  PubMed  CAS  Google Scholar 

  12. Tang TC, Poon RT, Lau CP, Xie D, Fan ST (2005) Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma. World J Gastroenterol 11(13):1896–1902

    PubMed  CAS  Google Scholar 

  13. Ramakrishnan G, Augustine TA, Jagan S, Vinodhkumar R, Devaki T (2007) Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Exp Oncol 29(1):39–44

    PubMed  CAS  Google Scholar 

  14. Folch J, Lees M, Stanley GHS (1957) A simple methods for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  15. Parekh AC, Jung DH (1970) Cholesterol determination with ferric aceta-uranyl acetate and sulphuric acid-ferrous sulphate reagents. Anal Chem 42:1423–1427

    Article  CAS  Google Scholar 

  16. Foster LB, Dunn RT (1973) Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method. Clin Chem 19:338–340

    PubMed  CAS  Google Scholar 

  17. Hron WT, Menahan LA (1981) A sensitive method for the determination of free fatty acids in plasma. J Lipid Res 122:377–381

    Google Scholar 

  18. Bartlett GR (1959) Phosphorus assay by column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  19. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  20. Burstein M, Scholnick HR (1972) Precipitation of chylomicron and very low density lipoprotein from human serum with sodium lauryl sulphate. Life Sci 11:177–184

    Article  CAS  Google Scholar 

  21. Bier M (1955) Enzymes of lipid metabolism. Lipases and esterases. Methods Enzymol 1:631–638

    Google Scholar 

  22. Hitz J, Sternmetz J, Siest G (1983) Plasma LCAT-reference values and effects of xenobiotics. Clin Chim Acta 133:85–96

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt A (1974) Measurement of lipoprotein lipase and hepatic triglyceride lipase in human post heparin plasma. Methods Enzymol 72:325–337

    Google Scholar 

  24. Rao AV, Ramakrishnan S (1972) Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue. Clin Chem 21(10):1523–1525

    Google Scholar 

  25. Morrison WR, Smith LM (1964) Preparations of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–607

    PubMed  CAS  Google Scholar 

  26. Sako A, Kitayama J, Kaisaki S, Nagawa H (2004) Hyperlipidemia is a risk factor for lymphatic metastasis in superficial esophageal carcinoma. Cancer Lett 208:43–49

    Article  PubMed  CAS  Google Scholar 

  27. Kitayama J, Hatano K, Kaisaki S, Suzuki H, Fujii S, Nagawa H (2004) Hyperlipidemia is positively is correlated with lymphatic metastasis in men with early gastric cancers. Br J Surg 91(2):191–198

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi HK, Schmidt GW, Iwagaki H, Yoshino T, Tanaka N, Nishibori M (2006) Hypothesis: the antitumor activities of statins may be mediated by IL-18. J Leukoc Biol 80:215–216

    Article  PubMed  CAS  Google Scholar 

  29. Kawasaki M, Yagasaki K, Miura Y, Funabiki R (2004) Comparison of the changes in lipid metabolism between hepatoma-bearing and lipopolysaccharide-treated rats. Biosci Biotechnol Biochem 68(1):72–78

    Article  PubMed  CAS  Google Scholar 

  30. Hirayama T, Honda A, Matsuzaki Y et al (2006) Hypercholesterolemia in rats with hepatomas: increased oxysterols accelerate efflux but do not inhibit biosynthesis of cholesterol. Hepatology 44(3):602–611

    Article  PubMed  CAS  Google Scholar 

  31. Regnstrom J, Nisson J, Toruvall P, Laudou C, Hamsten A (1992) Susceptibility to low-density lipoproteins oxidation and coronary atherosclerosis in man. Lancet 339:1883–1886

    Article  Google Scholar 

  32. Chander R, Kapoor NK (1990) High density lipoprotein is a scavenger of superoxide anions. Biochem Pharmacol 40:1663–1665

    Article  PubMed  CAS  Google Scholar 

  33. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM (2005) Statins and cancer prevention. Nat Rev Cancer 5(12):930–942

    Article  PubMed  CAS  Google Scholar 

  34. Asakage M, Tsuno NH, Kitayam J (2004) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor (pravastatin) inhibits endothelial cell proliferation dependent on G1 cell cycle arrest. Anticancer Drugs 15(6):625–632

    Article  PubMed  CAS  Google Scholar 

  35. Dehmlow C, Murawski N, de Groot H et al (1996) Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci 58:1591–1600

    Article  PubMed  CAS  Google Scholar 

  36. Kolanjiappan K, Ramachandran CR, Manoharan S (2003) Biochemical changes in tumor tissues of oral cancer patients. Clin Biochem 36:61–65

    Article  PubMed  CAS  Google Scholar 

  37. Carbo N, Costelli P, Tessitore L et al (1994) Anti-tumour necrosis factor treatment interferes with changes in lipid metabolism in a tumour cachexia model. Clin Sci 87:349–355

    PubMed  CAS  Google Scholar 

  38. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 8:582–591

    Article  CAS  Google Scholar 

  39. Thirunavukkarasu C, Selvendhiran K, Princevijeyasingh J, Senthilnathan P, Sakthisekaran D (2003) Effect of sodium selenite on lipids and lipid-metabolizing enzymes in N-nitrosodiethylamine-induced hepatoma-bearing rats. J Trace Elem Exp Med 16(1):1–15

    Article  CAS  Google Scholar 

  40. Rogers MP, Hutchinson I (1981) The effect of in vitro high-density lipoprotein on hydrolysis of triacyl glycerol by lipoprotein lipase. Biochem J 200:453–457

    PubMed  CAS  Google Scholar 

  41. Trombetta A, Maggiora M, Martinasso G, Cotogni P, Canuto RA, Muzio G (2007) Arachidonic acid and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs. Chem Biol Interact 165:239–250

    Article  PubMed  CAS  Google Scholar 

  42. Sravankumar G, Das UN (1997) Cytotoxic action of alpha linolenic and eicosapentaenoic acids on myeloma cells in vitro. Prostaglandins Leukot Essent Fatty Acids 56:285–293

    Article  CAS  Google Scholar 

  43. Vento R, Alessandro ND, Giuliano M, Lauricells M, Carabillo M, Tesoriere G (2000) Induction of apoptosis by arachidonic acid in human retinoblastoma Y79 cells: involvement of oxidative stress. Exp Eye Res 70(4):503–517

    Article  PubMed  CAS  Google Scholar 

  44. Bianchi A, Dewailly E, Gautier H et al (2004) Decrease of human hepatoma cell growth by arachidonic acid is associated with an accumulation of derived products from lipid peroxidation. Biochimie 86:633–642

    Article  PubMed  CAS  Google Scholar 

  45. Jones R, Alvarez LFA, Alvarez OR, Broaddus R, Das S (2006) Arachidonic acid and colorectal carcinogenesis. Mol cell Biochem 253:141–149

    Google Scholar 

  46. Koga H (2003) Hepatocellular carcinoma: is there a potential for chemoprevention using cyclooxygenase-2 inhibitors? Cancer 98:661–667

    Article  PubMed  CAS  Google Scholar 

  47. Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T (2003) Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through AKT activation: evidence for AKT inhibition in celecoxib-induced apoptosis. Hepatology 38:756–768

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. CEAAL Analytical Laboratory (A unit of C. L. Baid Mehta College of Pharmacy), Chennai, for their help in Gas chromatography analysis and we wish to thank Dr. P. Srinivasan, Korea Atomic Energy Research Institute, South Korea, for his guidance and assistance during immunohistochemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruvengadam Devaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, G., Elinos-Báez, C.M., Jagan, S. et al. Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma. Mol Cell Biochem 313, 53–61 (2008). https://doi.org/10.1007/s11010-008-9741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9741-5

Keywords

Navigation