Skip to main content

Advertisement

Log in

Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The Asian scorpion Buthus martensil Karsch is important in the Chinese traditional medicine where it is used for the treatment of some nervous system diseases. The anti-epilepsy peptide (AEP) is a 61-amino-acid polypeptide extracted from the venom of B. martensil Karsch. Research has confirmed that it has anti-epileptic effects on the rat model of epilepsy. In this experiment, a cDNA library of AEP from the venom of B. martensil Karsch was constructed using RT-PCR; the primer was designed and used for the amplification. An expression vector of AEP was constructed using Pichia pastoris. Vector expression was induced, and protein purification was then performed. Bolting of the interaction molecule of AEP was by His pull down. Experimental results indicate high AEP expression, and the obtained protein was purified and compared with the control group. Four conspicuous protein bands were observed, and mass chromatographic analysis indicated that the four proteins were synaptosomal-associated protein of 25 kDa (SNAP-25), glial fibrillary acidic protein (GFAP), Glutamic acid decarboxylase (GAD) and N-methyl-d-aspartate (NMDA). Further, the four protein bands were verified by mammalian two-hybrid experiments and co-immunoprecipitation. AEP was found to interact with SNAP2 and NMDA. This provides experimental evidence for the mechanism of AEP’s anti-epileptic action and for the manufacture of a novel type anti-epileptic drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou X-H, Yang D, Zhang J-H et al (1989) Purification and N-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem J 257:509–517

    CAS  PubMed  Google Scholar 

  2. Wang C-G, He X-L, Shao F et al (2001) Molecular characterization of an anti-epilepsy peptide from the scorpion Buthus martensi Karsch. Eur J Biochem 268:2480–2485. doi:10.1046/j.1432-1327.2001.02132.x

    Article  CAS  PubMed  Google Scholar 

  3. Wang Z, Shao Z, Li J et al (2005) Construction and identification of recombinant adeno-associated virus transducing antiepilepsy peptide gene. Chin Tradit Herb Drugs 36:1844–1846

    CAS  Google Scholar 

  4. Gong X, Zhou L, Zeng D et al Construction of native human prothymosin α by prokaryotic coexpression. Chinese Patents (1724663)

  5. Park HS, Park D, Bae YS (2006) Molecular interaction of NADPH oxidase 1 with β Pix and Nox Organizer 1. Biochem Biophys Res Commun 339:985–990. doi:10.1016/j.bbrc.2005.11.108

    Article  CAS  PubMed  Google Scholar 

  6. Kang S-W, Shin Y-J, Shim Y-J et al (2005) Clusterin interacts with SCLIP (SCG10-like protein) and promotes neurite outgrowth of PC12 cells. Exp Cell Res 309:305–315. doi:10.1016/j.yexcr.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  7. Lee S-Y (2005) Identification of a protein that interacts with the vanilloid receptor. Biochem Biophys Res Commun 331:1445–1451. doi:10.1016/j.bbrc.2005.04.066

    Article  CAS  PubMed  Google Scholar 

  8. Yang X, Li J, Qin H et al (2005) Mint represses transactivation of the type II collagen gene enhancer through interaction with αA-crystallin-binding protein 1. J Biol Chem 280:18710–18716. doi:10.1074/jbc.M500859200

    Article  CAS  PubMed  Google Scholar 

  9. Corona M, Coronas FV, Merino E et al (2003) A novel class of peptide found in scorpion venom with neurodepressant effects in peripheral and central nervous system of the rat. Biochim Biophys Acta 1649:58–67

    CAS  PubMed  Google Scholar 

  10. Bosmans F, Tytgat J (2007) Voltage-gated sodium channel modulation by scorpion a-toxins. Toxicon 49:142–158

    Article  CAS  PubMed  Google Scholar 

  11. Nong Y, Huang YQ, Ju W et al (2003) Glycine binding primes NMDA receptor internalization. Nature 6929:302–307. doi:10.1038/nature01497

    Article  Google Scholar 

  12. Harrington EP, Möddel G, Najm IM et al (2007) Altered glutamate receptor—transporter expression and spontaneous seizures in rats exposed to methylazoxymethanol in utero. Epilepsia 48:158–168. doi:10.1111/j.1528-1167.2006.00838.x

    Article  CAS  PubMed  Google Scholar 

  13. Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 284:336

    Article  Google Scholar 

  14. Huang Y, Zuo P (2007) The modulation of Buthus martensic Karch Extract (BmKE) on Cerebral Cortex NMDA Receptor and GABA Receptor in Epileptic Mice. Lishizhen Med Materia Medica Res 18:71–73

    Google Scholar 

  15. Weiss JM, Huller H, Polack S et al (2007) Estradiol differentially modulates the exocytotic proteins SNAP-25 and munc-18 in pituitary gonadotrophs. J Mol Endocrinol 38:305–314. doi:10.1677/jme.1.02114

    Article  CAS  PubMed  Google Scholar 

  16. Sierra-Paredes G, Sierra-Marcuño G (2007) Extrasynaptic GABA and glutamate receptors in epilepsy. CNS Neurol Disord Drug Targets 6:288–300. doi:10.2174/187152707781387251

    Article  CAS  PubMed  Google Scholar 

  17. Kataoka M, Kuwahara R, Matsuo R et al (2006) Development and activity-dependent regulation of SNAP-25 phosphorylation in rat brain. Neurosci Lett 407:258–262. doi:10.1016/j.neulet.2006.08.055

    Article  CAS  PubMed  Google Scholar 

  18. Apland JP, Adler M, Oyler GA (2003) Inhibition of neurotransmitter release by peptides that mimic the N-terminal domain of SNAP-25. J Protein Chem 22:147–153. doi:10.1023/A:1023423013741

    Article  CAS  PubMed  Google Scholar 

  19. Costantin L, Bozzi Y, Richichi C et al (2005) Antiepileptic effects of botulinum neurotoxin E. J Neurosci 25:1943–1951. doi:10.1523/JNEUROSCI.4402-04.2005

    Article  CAS  PubMed  Google Scholar 

  20. Hinz B, Becher A, Mitter D et al (2001) Activity-dependent changes of the presynaptic synaptophysin-synaptobrevin complex in adult rat brain. Eur J Cell Biol 80:615–619. doi:10.1078/0171-9335-00196

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongren Wang or Wei Zhang.

Additional information

Zongren Wang and Wen Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, W., Shao, Z. et al. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol Cell Biochem 330, 97–104 (2009). https://doi.org/10.1007/s11010-009-0104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0104-7

Keywords

Navigation