Skip to main content

Advertisement

Log in

FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Resveratrol (trans-3,5,4′-trihydroxystilbene), a compound found largely in the skins of red grapes and wines, possesses anti-cancer and anti-angiogenic properties and protects the cardiovascular system. However, the molecular mechanisms by which resveratrol inhibits angiogenesis are currently subjects of intense investigation. The purpose of this study was to examine whether FOXO transcription factors mediate anti-angiogenic effects of resveratrol, and whether vascular endothelial growth factor (VEGF) neutralizing antibody can enhance these effects of resveratrol. Inhibition of PI3 kinase (PI3K)/AKT and MEK/ERK pathways synergistically inhibited migration and capillary tube formation of Human Umbilical Vein Endothelial Cells (HUVECs) and further enhanced the anti-angiogenic effects of resveratrol. Inhibitors of AKT and MEK kinase synergistically inhibited cytoplasmic FOXO3a phosphorylation, which was accompanied by its nuclear translocation in HUVECs. Interestingly, inhibition of PI3K/AKT and MEK/ERK pathways synergistically induced FOXO transcriptional activity and inhibited cell migration and capillary tube formation. Antiangiogenic effects of resveratrol were enhanced by inhibitors of AKT and MEK. Phosphorylation-deficient mutants of FOXOs induced FOXO transcriptional activity, inhibited HUVEC cell migration, and capillary tube formation, and also enhanced antiangiogenic effects of resveratrol. Finally, VEGF neutralizing antibody enhanced the anti-proliferative and anti-angiogenic effects of resveratrol. In conclusion, regulation of FOXO transcription factors by resveratrol may play an important role in angiogenesis which is critical for cancer, diabetic retinopathy, rheumatoid arthritis, psoriasis, and cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

    Article  CAS  PubMed  Google Scholar 

  2. Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. Curr Oncol 13:14–26

    CAS  PubMed  Google Scholar 

  3. Shankar S, Siddiqui I, Srivastava RK (2007) Molecular mechanisms of resveratrol (3, 4, 5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem 304:273–285

    Article  CAS  PubMed  Google Scholar 

  4. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ III, Emanuel BS, Rovera G, Barr FG (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–235

    Article  CAS  PubMed  Google Scholar 

  5. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC (1998) Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47:187–189

    Article  CAS  PubMed  Google Scholar 

  6. Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA (1997) AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 90:3714–3719

    CAS  PubMed  Google Scholar 

  7. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J, Hammermann J, Henn T, Lampert F (1997) Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 14:195–202

    Article  CAS  PubMed  Google Scholar 

  8. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  9. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  10. Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T (1999) Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 274:17184–17192

    Article  CAS  PubMed  Google Scholar 

  11. Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20:8969–8982

    Article  CAS  PubMed  Google Scholar 

  13. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  14. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ (2000) Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10:1201–1204

    Article  CAS  PubMed  Google Scholar 

  15. Tang TT, Dowbenko D, Jackson A, Toney L, Lewin DA, Dent AL, Lasky LA (2002) The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem 277:14255–14265

    Article  CAS  PubMed  Google Scholar 

  16. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 20:9138–9148

    Article  CAS  PubMed  Google Scholar 

  17. Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM, Fala F, Cocco L, Martelli AM (2003) The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 17:2157–2167

    Article  CAS  PubMed  Google Scholar 

  18. Burgering BM, Kops GJ (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27:352–360

    Article  CAS  PubMed  Google Scholar 

  19. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22:7842–7852

    Article  CAS  PubMed  Google Scholar 

  21. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  22. Hosaka T, Biggs WH III, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101:2975–2980

    Article  CAS  PubMed  Google Scholar 

  23. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S, Nakayama K, Ikeda K, Motoyama N, Mori N (2004) Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 279:34741–34749

    Article  CAS  PubMed  Google Scholar 

  24. Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, Lai KM, Lin HC, Ioffe E, Yancopoulos GD, Rudge JS (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071

    Article  CAS  PubMed  Google Scholar 

  25. Yang B, Cao DJ, Sainz I, Colman RW, Guo YL (2004) Different roles of ERK and p38 MAP kinases during tube formation from endothelial cells cultured in 3-dimensional collagen matrices. J Cell Physiol 200:360–369

    Article  CAS  PubMed  Google Scholar 

  26. Woessmann W, Meng YH, Mivechi NF (1999) An essential role for mitogen-activated protein kinases, ERKs, in preventing heat-induced cell death. J Cell Biochem 74:648–662

    Article  CAS  PubMed  Google Scholar 

  27. Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316

    Article  CAS  PubMed  Google Scholar 

  28. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y, Fukamizu A (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal 19:519–527

    Article  CAS  PubMed  Google Scholar 

  29. Dai J, Rabie AB (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86:937–950

    Article  CAS  PubMed  Google Scholar 

  30. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:109–119

    Article  CAS  PubMed  Google Scholar 

  31. Khosravi Shahi P, Fernandez Pineda I (2008) Tumoral angiogenesis: review of the literature. Cancer Invest 26:104–108

    Article  PubMed  Google Scholar 

  32. Sirohi B, Smith K (2008) Bevacizumab in the treatment of breast cancer. Expert Rev Anticancer Ther 8:1559–1568

    Article  CAS  PubMed  Google Scholar 

  33. Socinski MA (2008) Bevacizumab as first-line treatment for advanced non-small cell lung cancer. Drugs Today (Barc) 44:293–301

    Article  CAS  Google Scholar 

  34. Lien S, Lowman HB (2008) Therapeutic anti-VEGF antibodies. Handb Exp Pharmacol 181:131–150

    Article  CAS  PubMed  Google Scholar 

  35. Beatty GL, Giantonio BJ (2008) Bevacizumab and oxaliplatin-based chemotherapy in metastatic colorectal cancer. Expert Rev Anticancer Ther 8:683–688

    Article  CAS  PubMed  Google Scholar 

  36. Wheatley-Price P, Shepherd FA (2008) Targeting angiogenesis in the treatment of lung cancer. J Thorac Oncol 3:1173–1184

    Article  PubMed  Google Scholar 

  37. Bradley DP, Tessier JJ, Lacey T, Scott M, Jurgensmeier JM, Odedra R, Mills J, Kilburn L, Wedge SR (2008) Examining the acute effects of cediranib (RECENTIN, AZD2171) treatment in tumor models: a dynamic contrast-enhanced MRI study using gadopentate. Magn Reson Imaging 27:377–384

    Article  PubMed  Google Scholar 

  38. Heckman CA, Holopainen T, Wirzenius M, Keskitalo S, Jeltsch M, Yla-Herttuala S, Wedge SR, Jurgensmeier JM, Alitalo K (2008) The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res 68:4754–4762

    Article  CAS  PubMed  Google Scholar 

  39. Lang SA, Brecht I, Moser C, Obed A, Batt D, Schlitt HJ, Geissler EK, Stoeltzing O (2008) Dual inhibition of Raf and VEGFR2 reduces growth and vascularization of hepatocellular carcinoma in an experimental model. Langenbecks Arch Surg 393:333–341

    Article  PubMed  Google Scholar 

  40. Lang SA, Schachtschneider P, Moser C, Mori A, Hackl C, Gaumann A, Batt D, Schlitt HJ, Geissler EK, Stoeltzing O (2008) Dual targeting of Raf and VEGF receptor 2 reduces growth and metastasis of pancreatic cancer through direct effects on tumor cells, endothelial cells, and pericytes. Mol Cancer Ther 7:3509–3518

    Article  CAS  PubMed  Google Scholar 

  41. Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK (2007) Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal 2:10–18

    Article  PubMed  Google Scholar 

  42. Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N (2005) FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 7:752–760

    Article  CAS  PubMed  Google Scholar 

  43. Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:7–16

    Article  PubMed  Google Scholar 

  44. Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM, Clardy J, Sellers WR, Silver PA (2003) A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4:463–476

    Article  CAS  PubMed  Google Scholar 

  45. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  46. Chlench S, Mecha Disassa N, Hohberg M, Hoffmann C, Pohlkamp T, Beyer G, Bongrazio M, Da Silva-Azevedo L, Baum O, Pries AR, Zakrzewicz A (2007) Regulation of Foxo-1 and the angiopoietin-2/Tie2 system by shear stress. FEBS Lett 581:673–680

    Article  CAS  PubMed  Google Scholar 

  47. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392

    Article  CAS  PubMed  Google Scholar 

  48. Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A (2004) Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101:10042–10047

    Article  CAS  PubMed  Google Scholar 

  49. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    CAS  PubMed  Google Scholar 

  50. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  CAS  PubMed  Google Scholar 

  51. Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651

    Article  CAS  PubMed  Google Scholar 

  52. Folkman J (2003) Angiogenesis and proteins of the hemostatic system. J Thromb Haemost 1:1681–1682

    Article  CAS  PubMed  Google Scholar 

  53. Folkman J (2003) Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2:S127–S133

    CAS  PubMed  Google Scholar 

  54. Folkman J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13:159–167

    Article  CAS  PubMed  Google Scholar 

  55. Tang TT, Lasky LA (2003) The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J Biol Chem 278:30125–30135

    Article  CAS  PubMed  Google Scholar 

  56. Huang H, Tindall DJ (2006) FOXO factors: a matter of life and death. Future Oncol 2:83–89

    Article  CAS  PubMed  Google Scholar 

  57. Potente M, Fisslthaler B, Busse R, Fleming I (2003) 11, 12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J Biol Chem 278:29619–29625

    Article  CAS  PubMed  Google Scholar 

  58. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  59. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our lab members for critical reading of the manuscript. We also thank Dr. Noboru Motoyama (National Institute for Longevity Sciences, Obu, Aichi, Japan) and Dr. Tatsuo Furuyama (Sonoda Women’s University, Amagasaki, Hyogo, Japan) for providing FOXO expression plasmids and FOXO-luciferase construct (pGL3-6X DBE), respectively. The study was initiated at the University of Texas Health Science Center at Tyler. The project was supported by NIH R01CA114469 (R.K.S.) and the Department of Veterans Affairs Merit Review Program (T.G.U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Shankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R.K., Unterman, T.G. & Shankar, S. FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337, 201–212 (2010). https://doi.org/10.1007/s11010-009-0300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0300-5

Keywords

Navigation