Skip to main content
Log in

Redox-sensitive prosurvival and proapoptotic protein expression in the myocardial remodeling post-infarction in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H2O2) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3β/GSK-3β ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H2O2 (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3β phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H2O2 levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fiorillo C, Nediani C, Ponziani V et al (2005) Cardiac volume overload rapidly induces oxidative stress-mediated myocyte apoptosis and hypertrophy. Biochim Biophys Acta 1741:173–182

    CAS  PubMed  Google Scholar 

  2. Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB (2001) Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol 281:R1734–R1745

    CAS  PubMed  Google Scholar 

  3. Opie LH, Commerford PJ, Gersh B, Pfeffer MA (2006) Controversies in ventricular remodeling. Lancet 367:356–367

    Article  PubMed  Google Scholar 

  4. Qin F, Liang MC, Liang C (2005) Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits. Biochim Biophys Acta 1740:499–513

    CAS  PubMed  Google Scholar 

  5. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  PubMed  Google Scholar 

  6. Pons S, Fornes P, Hagege AA, Heudes D, Giudicelli J, Richer C (2003) Survival, haemodynamics and cardiac remodeling follow up in mice after myocardial infarction. Clin Exp Pharmacol Physiol 30:25–30

    Article  CAS  PubMed  Google Scholar 

  7. Baines CP, Molkentin JD (2005) Stress signaling pathway that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Ma Y, Yang Y et al (2009) Downregulation of survival signaling pathways and increased apoptosis in the transition of pressure overload-induced cardiac Hypertrophy towards to heart failure. Clin Exp Pharmacol Physiol. doi:10.1111/j.1440-1681.2009.05243.x

  9. Seedon M, Looi YH, Shah AM (2007) Oxidative stress and redox signaling in cardiac hypertrophy and heart failure. Heart 93:903–907

    Article  Google Scholar 

  10. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct pathways. J Mol Cell Cardiol 35:615–621

    Article  CAS  PubMed  Google Scholar 

  11. Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  CAS  PubMed  Google Scholar 

  12. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  CAS  PubMed  Google Scholar 

  13. Singh N, Dhalla AK, Seneviratne C, Singal PK (1995) Oxidative stress and heart failure. Mol Cell Biochem 147:77–81

    Article  CAS  PubMed  Google Scholar 

  14. Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI3-kinase and Akt. J Mol Cell Cardiol 38:63–71

    Article  CAS  PubMed  Google Scholar 

  15. Manning BD, Cantley LD (2007) Akt/Pkb signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  16. Muslin AJ (2008) MAPK signaling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115:203–218

    Article  CAS  Google Scholar 

  17. Nair VD, Olanow CW (2008) Differential modulation of Akt/glycogen synthase kinase-3β pathway regulates apoptotic and cytoprotective signaling responses. J Biol Chem 283:15469–15478

    Article  CAS  PubMed  Google Scholar 

  18. Haq S, Choukroum G, Kang ZB et al (2000) Glycogen synthase kinase-3β is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–129

    Article  CAS  PubMed  Google Scholar 

  19. Kin NH, Kin K, Park WS, Son HS, Bae Y (2007) PKB/Akt inhibits ceramide-induced apoptosis in neuroblastoma cells by blocking apoptosis-inducing factor (AIF) translocation. J Cell Biochem 102:1160–1170

    Article  Google Scholar 

  20. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  Google Scholar 

  21. Lorenzo HK, Susin SA (2007) Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Updat 10:235–255

    Article  CAS  PubMed  Google Scholar 

  22. Kim G, Chun Y, Park J, Kim M (2003) Role of apoptosis-inducing factor in myocardial cell death by ischemia–reperfusion. Biochem Biophys Res Commun 309:619–624

    Article  CAS  PubMed  Google Scholar 

  23. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512

    CAS  PubMed  Google Scholar 

  24. Peron AP, Saraiva RM, Antonio EL, Tucci PJ (2006) Mechanical function is normal in remanescent myocardium during the healing period of myocardial infarction—despite congestive heart failure. Arq Bras Cardiol 86:105–112

    Article  PubMed  Google Scholar 

  25. Mercier JC, DiSessa TG, Jarmakani JM et al (1982) Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation 65:962–969

    CAS  PubMed  Google Scholar 

  26. Nozawa E, Kanashiro RM, Murad N et al (2006) Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats. Braz J Med Biol Res 39:687–695

    Article  CAS  PubMed  Google Scholar 

  27. Akerboom T, Sies H (1981) Assay of glutathione disulfide and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  CAS  PubMed  Google Scholar 

  28. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    Article  CAS  PubMed  Google Scholar 

  29. Araujo ASR, Ribeiro MFM, Schenkel P et al (2006) Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism. Mol Cell Endocrinol 249:133–139

    CAS  PubMed  Google Scholar 

  30. Laemmli V (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  31. Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol 36:59–66

    CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72:406–412

    CAS  PubMed  Google Scholar 

  34. Singal PK, Khaper N, Belló-Klein A et al (1999) Oxidative stress status in the transition of hypertrophy to heart failure. Heart Fail Rev 4:353–360

    Article  CAS  Google Scholar 

  35. Dincer Y, Akca T, Alademir Z, Ilkova H (2002) Effect of oxidative stress on glutathione pathway in red blood cells from patients with insulin dependent diabetes mellitus. Metabolism 51:1360–1362

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki YJ, Ford GD (1999) Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 31:345–353

    Article  CAS  PubMed  Google Scholar 

  37. Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 5:731–740

    Article  CAS  PubMed  Google Scholar 

  38. Jones DP (2006) Redefining oxidative stress. Antiox Redox Signal 8:1865–1879

    Article  CAS  Google Scholar 

  39. Araujo AS, Schenkel P, Enzveiler AT et al (2008) The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J Mol Endocrinol 41:423–430

    Article  CAS  PubMed  Google Scholar 

  40. Cai H, Li Z, Davis ME, Kanner W, Harrison DG, Dudley SC (2003) Akt dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase ½ cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide. Mol Pharmacol 63:325–331

    Article  CAS  PubMed  Google Scholar 

  41. Ruffels J, Griffin M, Dickenson JM (2004) Activation of Erk 1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of Erk 1/2 in H2O2-induced cell death. Eur J Pharmacol 483:163–173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and the Secretaria de Ciência e Tecnologia do Estado do Rio Grande do Sul (SCT-RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane Belló-Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenkel, P.C., Tavares, A.M.V., Fernandes, R.O. et al. Redox-sensitive prosurvival and proapoptotic protein expression in the myocardial remodeling post-infarction in rats. Mol Cell Biochem 341, 1–8 (2010). https://doi.org/10.1007/s11010-010-0431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0431-8

Keywords

Navigation