Skip to main content
Log in

Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been previously shown that regulators of physiological growth such as thyroid hormone (TH) can favorably remodel the post ischaemic myocardium. Here, we further explored whether this effect can be preserved in the presence of co-morbidities such as diabetes which accelerates cardiac remodeling and increases mortality after myocardial infarction. Acute myocardial infarction (AMI) was induced by left coronary ligation in rats with type I diabetes (DM) induced by streptozotocin administration (STZ; 35 mg/kg; i.p.) while sham-operated animals served as controls (SHAM). AMI resulted in distinct changes in cardiac function and geometry; EF% was significantly decreased in DM-AMI [37.9 ± 2.0 vs. 74.5 ± 2.1 in DM-SHAM]. Systolic and diastolic chamber dimensions were increased without concomitant increase in wall thickness and thus, wall tension index [WTI, the ratio of (Left Ventricular Internal Diameter at diastole)/2*(Posterior Wall thickness)], an index of wall stress, was found to be significantly increased in DM-AMI; 2.27 ± 0.08 versus 1.70 ± 0.05. 2D-Strain echocardiographic analysis showed reduced systolic radial strain in all segments, indicating increased loss of cardiac myocytes in the infarct related area and less compensatory hypertrophy in the viable segments. This response was accompanied by a marked decrease in the expression of TRα1 and TRβ1 receptors in the diabetic myocardium without changes in circulating T3 and T4. Accordingly, the expression of TH target genes related to cardiac contractility was altered; β-MHC and PKCα were significantly increased. TH (L-T4 and L-T3) administration prevented these changes and resulted in increased EF%, normal wall stress and increased systolic radial strain in all myocardial segments. Acute myocardial infarction in diabetic rats results in TH receptor down-regulation with important physiological consequences. TH treatment prevents this response and improves cardiac hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    CAS  PubMed  Google Scholar 

  2. Pantos C, Mourouzis I, Xinaris C, Kokkinos AD, Markakis K, Dimopoulos A, Panagiotou M, Saranteas T, Kostopanagiotou G, Cokkinos DV (2007) Time-dependent changes in the expression of thyroid hormone receptor {alpha}1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol 156:415–424

    Article  CAS  PubMed  Google Scholar 

  3. Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM (2008) Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187

    Article  CAS  PubMed  Google Scholar 

  4. Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339

    Article  PubMed  Google Scholar 

  5. Pantos C, Mourouzis I, Saranteas T, Clave G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol 104:69–77

    Article  CAS  PubMed  Google Scholar 

  6. Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M (2006) Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 69:450–458

    Article  CAS  PubMed  Google Scholar 

  7. Pantos C, Mourouzis I, Cokkinos DV (2007) Protection of the abnormal heart. Heart Fail Rev 12:319–330

    Article  PubMed  Google Scholar 

  8. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    Article  CAS  PubMed  Google Scholar 

  9. Kalofoutis C, Piperi C, Kalofoutis A, Harris F, Phoenix D, Singh J (2007) Type II diabetes mellitus and cardiovascular risk factors: current therapeutic approaches. Exp Clin Cardiol 12:17–28

    CAS  PubMed  Google Scholar 

  10. Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME (2007) Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 293:H1609–H1616

    Article  CAS  PubMed  Google Scholar 

  11. Shiomi T, Tsutsui H, Ikeuchi M, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T, Takeshita A (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42:165–172

    Article  CAS  PubMed  Google Scholar 

  12. Landau D, Chayat C, Zucker N, Golomb E, Yagil C, Yagil Y, Segev Y (2008) Early blood pressure-independent cardiac changes in diabetic rats. J Endocrinol 197:75–83

    Article  CAS  PubMed  Google Scholar 

  13. Soliman H, Craig GP, Nagareddy P, Yuen VG, Lin G, Kumar U, McNeill JH, Macleod KM (2008) Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats. Cardiovasc Res 79:322–330

    Article  CAS  PubMed  Google Scholar 

  14. Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Bohm M, Pauschinger M, Schultheiss HP, Tschope C (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327

    Article  PubMed  Google Scholar 

  15. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration re-shapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318

    Article  CAS  PubMed  Google Scholar 

  16. Migrino RQ, Zhu X, Pajewski N, Brahmbhatt T, Hoffmann R, Zhao M (2007) Assessment of segmental myocardial viability using regional 2-dimensional strain echocardiography. J Am Soc Echocardiogr 20:342–351

    Article  PubMed  Google Scholar 

  17. Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD (2005) Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45:2034–2041

    Article  PubMed  Google Scholar 

  18. Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, Cokkinos DV (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol 100:422–432

    Article  CAS  PubMed  Google Scholar 

  19. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D and Cokkinos DV (2010) Thyroid hormone receptor α1 down-regulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Hormone and Metabolic Research. doi: 10.1055/s-0030-1255035

  20. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72

    Article  CAS  PubMed  Google Scholar 

  21. Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, Cokkinos DV (2008) Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59:253–269

    CAS  PubMed  Google Scholar 

  22. Satoh M, Minami Y, Takahashi Y, Nakamura M (2008) Immune modulation: role of the inflammatory cytokine cascade in the failing human heart. Curr Heart Fail Rep 5:69–74

    Article  CAS  PubMed  Google Scholar 

  23. Kinugawa K, Jeong MY, Bristow MR, Long CS (2005) Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 19:1618–1628

    Article  CAS  PubMed  Google Scholar 

  24. Kinugawa K, Yonekura K, Ribeiro RC, Eto Y, Aoyagi T, Baxter JD, Camacho SA, Bristow MR, Long CS, Simpson PC (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598

    Article  CAS  PubMed  Google Scholar 

  25. Belakavadi M, Saunders J, Weisleder N, Raghava PS, Fondell JD (2010) Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 151:2946–2956

    Article  CAS  PubMed  Google Scholar 

  26. Rybin V, Steinberg SF (1996) Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ Res 79:388–398

    CAS  PubMed  Google Scholar 

  27. Hambleton M, Hahn H, Pleger ST, Kuhn MC, Klevitsky R, Carr AN, Kimball TF, Hewett TE, Dorn GW II, Koch WJ, Molkentin JD (2006) Pharmacological- and gene therapy-based inhibition of protein kinase C alpha/beta enhances cardiac contractility and attenuates heart failure. Circulation 114:574–582

    Article  CAS  PubMed  Google Scholar 

  28. Scruggs SB, Walker LA, Lyu T, Geenen DL, Solaro RJ, Buttrick PM, Goldspink PH (2006) Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCepsilon phosphorylation. J Mol Cell Cardiol 40:465–473

    Article  CAS  PubMed  Google Scholar 

  29. Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM (2005) Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation 112:3122–3130

    Article  CAS  PubMed  Google Scholar 

  30. Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, Perimenis P, Liappas A, Cokkinos DV (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60:49–56

    CAS  PubMed  Google Scholar 

  31. Migrino RQ, Aggarwal D, Konorev E, Brahmbhatt T, Bright M, Kalyanaraman B (2008) Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol 34:208–214

    Article  PubMed  Google Scholar 

  32. Suzuki S, Miyamoto T, Opsahl A, Sakurai A, DeGroot LJ (1994) Two thyroid hormone response elements are present in the promoter of human thyroid hormone receptor beta 1. Mol Endocrinol 8:305–314

    Article  CAS  PubMed  Google Scholar 

  33. Maruvada P, Baumann CT, Hager GL, Yen PM (2003) Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem 278:12425–12432

    Article  CAS  PubMed  Google Scholar 

  34. Bunn CF, Neidig JA, Freidinger KE, Stankiewicz TA, Weaver BS, McGrew J, Allison LA (2001) Nucleocytoplasmic shuttling of the thyroid hormone receptor alpha. Mol Endocrinol 15:512–533

    Article  CAS  PubMed  Google Scholar 

  35. Ojamaa K (2010) Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy. Vascul Pharmacol 52:113–119

    Article  CAS  PubMed  Google Scholar 

  36. Pantos C, Mourouzis I, Cokkinos DV (2010) Rebuilding the post-infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Fail Rev 15:143–154

    Article  CAS  PubMed  Google Scholar 

  37. Pantos C, Mourouzis I, Cokkinos DV (2010) Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vascul Pharmacol 52:157–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Niarchos foundation and the Hellenic Cardiology Society for supporting this piece of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalofoutis, C., Mourouzis, I., Galanopoulos, G. et al. Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem 345, 161–169 (2010). https://doi.org/10.1007/s11010-010-0569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0569-4

Keywords

Navigation