Skip to main content

Advertisement

Log in

Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial cells are the key components of vascular intima and play pivotal roles in vasculogenesis, angiogenesis, and tumor growth. Using Northern blot and real-time PCR, we confirmed that miR-126 and its host gene EGF-like domain 7 (EGFL7) were widely expressed in rat tissues but strictly expressed in endothelial cells. In mammals, miR-126 gene is embedded in intron7 of EGFL7. To explore the biogenesis of miR-126, plasmid EGFL7(126)-pEGFPc1 containing segment of exon7-intron7-exon8 of EGFL7 was constructed and expressed in 293T. Expression of spliced exon7–8 and excised mature miR-126 was detected by PCR and Northern blot. Knocking-down of endothelial endogenous miR-126 did not affect EGFL7 expression at mRNA or protein level. To investigate the possible roles of miR-126, PicTar, miRBase, miRanda, Bibiserv, and Targetscan were used to screen the targets. VEGFA and PIK3R2 were confirmed as the targets of miR-126 by luciferase reporter assay and Western blot. Interestingly, Northern blot and western blot showed that miR-126 was down-regulated in breast tumors where the VEGF/PI3K/AKT signaling pathway was activated. Introduction of miR-126 mimics into MCF-7 could effectively decrease VEGF/PI3K/AKT signaling activity. In summary, miR-126 was strictly expressed in endothelial cells and excised from EGFL7 pre-mRNA without affecting splicing and expression of its host gene. In addition, miR-126 could target both VEGFA and PIK3R2, and its expression was decreased in human breast cancer, implying that miR-126 may play a role in tumor genesis and growth by regulating the VEGF/PI3K/AKT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9(6):661–668. doi:10.1038/nm0603-661nm0603-661[pii]

    Article  PubMed  CAS  Google Scholar 

  2. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945. doi:nature04479[pii]10.1038/nature04479

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi:10.1038/35025220

    Article  PubMed  CAS  Google Scholar 

  4. Campagnolo L, Leahy A, Chitnis S, Koschnick S, Fitch MJ, Fallon JT, Loskutoff D, Taubman MB, Stuhlmann H (2005) EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol 167(1):275–284. doi:167/1/275[pii]

    Article  PubMed  CAS  Google Scholar 

  5. Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H (2004) EGFL7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324. doi:10.1002/dvdy.20063

    Article  PubMed  CAS  Google Scholar 

  6. Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier DY, De Sauvage FJ, Ye W (2004) The endothelial-cell-derived secreted factor EGFL7 regulates vascular tube formation. Nature 428(6984):754–758. doi:10.1038/nature02416nature02416[pii]

    Article  PubMed  CAS  Google Scholar 

  7. De Maziere A, Parker L, Van Dijk S, Ye W, Klumperman J (2008) EGFL7 knockdown causes defects in the extension and junctional arrangements of endothelial cells during zebrafish vasculogenesis. Dev Dyn 237(3):580–591. doi:10.1002/dvdy.21441

    Article  PubMed  Google Scholar 

  8. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248. doi:10.1038/35025215

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. doi:10.1038/nm0603-653nm0603-653[pii]

    Article  PubMed  CAS  Google Scholar 

  10. Dimmeler S, Zeiher AM (2000) Akt takes center stage in angiogenesis signaling. Circ Res 86(1):4–5

    PubMed  CAS  Google Scholar 

  11. Liu W, Ahmad SA, Reinmuth N, Shaheen RM, Jung YD, Fan F, Ellis LM (2000) Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 5(4):323–328

    Article  PubMed  CAS  Google Scholar 

  12. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, Carter R, Krieger JE, Manseau EJ, Harvey VS, Eckelhoefer IA, Feng D, Dvorak AM, Mulligan RC, Dvorak HF (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80(1):99–115

    Article  PubMed  CAS  Google Scholar 

  13. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:S0092867404000455[pii]

    Article  PubMed  CAS  Google Scholar 

  14. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230. doi:nrm2347[pii]10.1038/nrm2347

    Article  PubMed  CAS  Google Scholar 

  15. Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, Russo T (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J. doi:fj.09-152207 [pii] 10.1096/fj.09-152207

  16. Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S, Fedorov Y (2009) Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One 4(5):e5605. doi:10.1371/journal.pone.0005605

    Article  PubMed  Google Scholar 

  17. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi:nrc1840[pii]10.1038/nrc1840

    Article  PubMed  CAS  Google Scholar 

  18. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739. doi:S0960982202008096[pii]

    Article  PubMed  CAS  Google Scholar 

  19. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:S0092-8674(09)00008-7[pii]10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  20. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220. doi:nature03817[pii]10.1038/nature03817

    Article  PubMed  CAS  Google Scholar 

  21. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. doi:ng1725[pii]10.1038/ng1725

    Article  PubMed  CAS  Google Scholar 

  22. Soncin F, Mattot V, Lionneton F, Spruyt N, Lepretre F, Begue A, Stehelin D (2003) VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J 22(21):5700–5711. doi:10.1093/emboj/cdg549

    Article  PubMed  CAS  Google Scholar 

  23. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86. doi:nature05983[pii]10.1038/nature05983

    Article  PubMed  CAS  Google Scholar 

  24. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. doi:S1534-5807(08)00281-5[pii]10.1016/j.devcel.2008.07.002

    Article  PubMed  Google Scholar 

  25. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284. doi:S1534-5807(08)00287-6[pii]10.1016/j.devcel.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  26. Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2(3):219–229. doi:S1934-5909(08)00057-X[pii]10.1016/j.stem.2008.01.016

    Article  PubMed  CAS  Google Scholar 

  27. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152. doi:nature06487[pii]10.1038/nature06487

    Article  PubMed  CAS  Google Scholar 

  28. Chen CH, Lai JM, Chou TY, Chen CY, Su LJ, Lee YC, Cheng TS, Hong YR, Chou CK, Whang-Peng J, Wu YC, Huang CY (2009) VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3 K/AKT pathway. PLoS One 4(4):e5052. doi:10.1371/journal.pone.0005052

    Article  PubMed  Google Scholar 

  29. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. doi:S0092-8674(07)00905-1[pii]10.1016/j.cell.2007.06.054

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the Major State Basic Research Development Program of the People’s Republic of China (Nos. 2009CB521902, 2009CB521907, 2007CB947002, and 2006CB503807) and the National Natural Science Foundation of China (Nos. 30971231, 30800375, 30670760, and 30570397).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Jing or Yongwen Qin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2011_723_MOESM1_ESM.ppt

Figure. S1 (A) The sequence of miR-126-3p and 5p are highly conserved in human, rat and mouse, fish and chicken. (B) Location of miR-126 in EGFL7 in human, mouse and rat. Figure. S2 Green fluorescence was observed in 293T which were transfected with pEGFPc1-EGFL7(126) (A) and pEGFPc1(B) after 24 h. (C) Luciferase activity was measured in 293T which were co-transfected of PGL3-VEGFA or PGL3-PIK3R2 with pEGFPc1-EGFL7(126) or pEGFPc1. Firefly luciferase was normalized to renilla luciferase. * P < 0.05 compares to controls. (PPT 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, N., Zhang, D., Xie, H. et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 351, 157–164 (2011). https://doi.org/10.1007/s11010-011-0723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0723-7

Keywords

Navigation