Skip to main content
Log in

CYP3A5 and NAT2 gene polymorphisms: role in childhood acute lymphoblastic leukemia risk and treatment outcome

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Susceptibility to acute lymphoblastic leukemia can be highly influenced by genetic polymorphisms in metabolizing enzyme genes of environmental carcinogens. This study aimed to evaluate the impact of the CYP3A5 and NAT2 metabolizing enzyme polymorphisms on the risk of childhood acute lymphoblastic leukemia. The analysis was conducted on 204 ALL patients and in 364 controls from a Brazilian population, using PCR–RFLP. The CYP3A5*3 polymorphic homozygous genotype was more frequent among ALL patients and the *3 allele variant was significantly associated with increased risk of childhood ALL (OR = 0.29; 95% CI, 0.14–0.60). The homozygous polymorphic genotype for the *6 allele variant was extremely rare and found in only two individuals. The heterozygous frequencies were similar for the ALL group and the control group. No significant differences were observed between the groups analyzed regarding NAT2 variant polymorphisms. None of the polymorphisms analyzed was related to treatment outcome. The results suggest that CYP3A5*3 polymorphism may play an important role in the risk of childhood ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Greaves M (1999) Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 35:1941–1953

    Article  PubMed  CAS  Google Scholar 

  2. Pui CH (2000) Acute lymphoblastic leukemia in children. Curr Opin Oncol 12:3–12

    Article  PubMed  CAS  Google Scholar 

  3. Bolufer P, Barragan E, Collado M, Cervera J, López JA, Sanz MA (2006) Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 30:1471–1491

    Article  PubMed  CAS  Google Scholar 

  4. Canalle R, Burim RV, Tone LG, Takahashi CS (2004) Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 43:100–109

    Article  PubMed  CAS  Google Scholar 

  5. Silveira VS, Canalle R, Scrideli CA, Queiroz RG, Tone LG (2010) Role of the CYP2D6, EPHX1, MPO, and NQO1 genes in the susceptibility to acute lymphoblastic leukemia in Brazilian children. Environ Mol Mutagen 51(1):48–56

    CAS  Google Scholar 

  6. van Iersel ML, Verhagen H, van Bladeren PJ (1999) The role of biotransformation in dietary (anti)carcinogenesis. Mutat Res 443:259–270

    PubMed  Google Scholar 

  7. Brockmoller J, Cascorbi I, Henning S, Meisel C, Roots I (2000) Molecular genetics of cancer susceptibility. Pharmacology 61:212–227

    Article  PubMed  CAS  Google Scholar 

  8. Lewis DFV, Watson E, Lake BG (1998) Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat Res 410:245–270

    Article  PubMed  CAS  Google Scholar 

  9. Amador AG, Righi PD, Radpour S, Everett ET, Weisberger E, Langer M, Eckert GJ, Christen AG, Campbell S Jr, Summerlin DJ, Reynolds N, Hartsfield JK Jr (2002) Polymorphisms of xenobiotic metabolizing genes in oropharyngeal carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:440–445

    Article  PubMed  Google Scholar 

  10. Agundez JA (2004) Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab 5(3):211–224

    Article  PubMed  CAS  Google Scholar 

  11. Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U (2006) Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 81:162–170

    Article  PubMed  CAS  Google Scholar 

  12. Chen HC, Hu WX, Liu QX, Li WK, Chen FZ, Rao ZZ, Liu XF, Luo YP, Cao YF (2008) Genetic polymorphisms of metabolic enzymes CYP1A1, CYP2D6, GSTM1 and GSTT1 and leukemia susceptibility. Eur J Cancer Prev 17(3):251–258

    Article  PubMed  CAS  Google Scholar 

  13. Meeker ND, Yang JJ, Schiffman JD (2010) Pharmacogenomics of pediatric acute lymphoblastic leukemia. Expert Opin Pharmacother 11(10):1621–1632

    Article  PubMed  CAS  Google Scholar 

  14. Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29:413–580

    Article  PubMed  CAS  Google Scholar 

  15. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391

    Article  PubMed  CAS  Google Scholar 

  16. Yamada S, Tang M, Richardson K, Halaschek-Wiener J, Chan M, Cook VJ, Fitzgerald JM, Elwood RK, Brooks-Wilson A, Marra F (2009) Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. Pharmacogenomics 10(9):1433–1445

    Article  PubMed  CAS  Google Scholar 

  17. Krajinovic M, Richer C, Sinnett H, Labuda D, Sinnett D (2000) Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene–gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 9:557–562

    PubMed  CAS  Google Scholar 

  18. Canalle R, Silveira VS, Scrideli CA, Queiroz RG, Lopes LF, Tone LG (2011) Impact of thymidylate synthase promoter and DNA repair gene polymorphisms on susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma 52(6):1118–1126

    Article  PubMed  CAS  Google Scholar 

  19. Cascorbi I, Brockmoller J, Mrozikiewicz PM, Bauer S, Loddenkemper R, Roots I (1996) Homozygous rapid arylamine N-acetyltransferase (NAT2) genotype as a susceptibility factor for lung cancer. Cancer Res 56:3961–3966

    PubMed  CAS  Google Scholar 

  20. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48:1668–1671

    PubMed  Google Scholar 

  21. Sailaja K, Rao DN, Rao DR, Vishnupriya S (2010) Analysis of CYP3A5*3 and CYP3A5*6 gene polymorphisms in Indian chronic myeloid leukemia patients. Asian Pac J Cancer Prev 11(3):781–784

    PubMed  CAS  Google Scholar 

  22. Borst L, Wallerek S, Dalhoff K, Rasmussen KK, Wesenberg F, Wehner PS, Schmiegelow K (2011) The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia. Eur J Haematol 86(6):477–483. doi:10.1111/j.1600-0609.2011.01608.x

    Article  PubMed  CAS  Google Scholar 

  23. Pakakasama S, Mukda E, Sasanakul W, Kadegasem P, Udomsubpayakul U, Thithapandha A, Hongeng S (2005) Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol 79:202–205

    Article  PubMed  CAS  Google Scholar 

  24. Blanco JG, Edick MJ, Hancock ML, Winick NJ, Dervieux T, Amylon MD, Bash RO, Behm FG, Camitta BM, Pui CH, Raimondi SC, Relling MV (2002) Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 12:605–611

    Article  PubMed  CAS  Google Scholar 

  25. Liu TC, Lin SF, Chen TP, Chang JG (2002) Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep 9:327–329

    PubMed  CAS  Google Scholar 

  26. Aplenc R, Glatfelter W, Han P, Rappaport E, La M, Cnaan A, Blackwood MA, Lange B, Rebbeck T (2003) CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br J Haematol 122:240–244

    Article  PubMed  CAS  Google Scholar 

  27. Lemos MC, Cabrita FJ, Silva HA, Vivan M, Placido F, Regateiro FJ (1999) Genetic polymorphism of CYP2D6, GSTM1 and NAT2 and susceptibility to haematological neoplasias. Carcinogenesis 20:1225–1229

    Article  PubMed  CAS  Google Scholar 

  28. Rollinson S, Roddam P, Willett E, Roman E, Cartwright R, Jack A, Morgan GJ (2001) NAT2 acetylator genotypes confer no effect on the risk of developing adult acute leukemia: a case-control study. Cancer Epidemiol Biomarkers Prev 10:567–568

    PubMed  CAS  Google Scholar 

  29. Zanrosso CW, Hatagima A, Emerenciano M, Ramos F, Figueiredo A, Félix TM, Segal SL, Guigliani R, Muniz MT, Pombo-de-Oliveira MS (2006) The role of methylenetetrahydrofolate reductase in acute lymphoblastic leukemia in a Brazilian mixed population. Leuk Res 30:477–481

    Article  PubMed  CAS  Google Scholar 

  30. Gra OA, Glotov AS, Kozhekbaeva Zh, Makarova OV, Nasedkina TV (2008) Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia. Mol Biol Mosk 42(2):214–225

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa S. Silveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, V.S., Canalle, R., Scrideli, C.A. et al. CYP3A5 and NAT2 gene polymorphisms: role in childhood acute lymphoblastic leukemia risk and treatment outcome. Mol Cell Biochem 364, 217–223 (2012). https://doi.org/10.1007/s11010-011-1220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1220-8

Keywords

Navigation