Skip to main content
Log in

Knockdown of ZNF403 inhibits cell proliferation and induces G2/M arrest by modulating cell-cycle mediators

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

ZNF403, also known as GGNBP2 (gametogenetin binding protein 2), is a highly conserved gene implicated in spermatogenesis. However, the exact biological function of ZNF403 is not clear. In this study, we identified the role of ZNF403 in cell proliferation and cell-cycle regulation by utilizing short hairpin RNA (shRNA)-mediated knockdown. ZNF403-specific shRNA expressing helper-dependent adenoviral vector (HD-Ad-ZNF403-shRNA) was constructed and transduced human cell lines. ZNF403 mRNA and protein expression levels were inhibited as evidenced by real-time PCR and western blot analyses. Noticeably, we found that knockdown of ZNF403 expression suppressed cell proliferation compared to the non-target shRNA and vector controls. Furthermore, cell-cycle analysis demonstrated that downregulation of ZNF403 promoted G2/M cell-cycle arrest in a dose-dependent manner. Moreover, human cell-cycle real-time PCR array revealed that ZNF403 knockdown influenced the expression profile of genes in cell-cycle regulation. Among these genes, western blot analysis confirmed the protein up-regulation of p21 and down-regulation of MCM2 in response to the ZNF403 knockdown. Additionally, knockdown of ZNF403 also showed an anti-carcinogenetic effect on anchorage-independent growth by colony formation assay and tumor cell migration by wound-healing assay with human laryngeal cancer cell line Hep-2 cells. Altogether, our findings suggest an essential role of ZNF403 in cell proliferation and provide a new insight into the function of ZNF403 in regulating the G2/M cell-cycle transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Plummer SJ, Paris MJ, Myles J, Tubbs R, Crowe J, Casey G (1997) Four regions of allelic imbalance on 17q12-qter associated with high-grade breast tumors. Genes Chromosomes Cancer 20(4):354–362. doi:10.1002/(SICI)1098-2264(199712)20:4<354:AID-GCC6>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  2. Li Y, Chen Z (2004) Molecular cloning and characterization of LCRG1 a novel gene localized to the tumor suppressor locus D17S800-D17S930. Cancer Lett 209(1):75–85. doi:10.1016/j.canlet.2003.11.034

    Article  PubMed  CAS  Google Scholar 

  3. Li YJ, Xie HL, Chen ZC, He CM (2001) Cloning and expression analysis of a laryngeal carcinoma related gene, LCRG1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 33(3):315–319

    CAS  Google Scholar 

  4. Cuddihy AR, O’Connell MJ (2003) Cell-cycle responses to DNA damage in G2. Int Rev Cytol 222:99–140

    Article  PubMed  Google Scholar 

  5. Ohbayashi T, Oikawa K, Iwata R, Kameta A, Evine K, Isobe T, Matsuda Y, Mimura J, Fujii-Kuriyama Y, Kuroda M, Mukai K (2001) Dioxin induces a novel nuclear factor, DIF-3, that is implicated in spermatogenesis. FEBS Lett 508(3):341–344

    Article  PubMed  CAS  Google Scholar 

  6. Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B (2005) Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett 579(2):559–566. doi:10.1016/j.febslet.2004.10.112

    Article  PubMed  CAS  Google Scholar 

  7. Jamsai D, Bianco DM, Smith SJ, Merriner DJ, Ly-Huynh JD, Herlihy A, Niranjan B, Gibbs GM, O’Bryan MK (2008) Characterization of gametogenetin 1 (GGN1) and its potential role in male fertility through the interaction with the ion channel regulator, cysteine-rich secretory protein 2 (CRISP2) in the sperm tail. Reproduction 135(6):751–759. doi:10.1530/REP-07-0485

    Article  PubMed  CAS  Google Scholar 

  8. Lu B, Bishop CE (2003) Mouse GGN1 and GGN3, two germ cell-specific proteins from the single gene Ggn, interact with mouse POG and play a role in spermatogenesis. J Biol Chem 278(18):16289–16296. doi:10.1074/jbc.M211023200

    Article  PubMed  CAS  Google Scholar 

  9. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630

    Article  PubMed  CAS  Google Scholar 

  10. Dahiya A, Gavin MR, Luo RX, Dean DC (2000) Role of the LXCXE binding site in Rb function. Mol Cell Biol 20(18):6799–6805

    Article  PubMed  CAS  Google Scholar 

  11. Chan HM, Smith L, La Thangue NB (2001) Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene 20(43):6152–6163. doi:10.1038/sj.onc.1204793

    Article  PubMed  CAS  Google Scholar 

  12. Fan S, Yuan R, Ma YX, Xiong J, Meng Q, Erdos M, Zhao JN, Goldberg ID, Pestell RG, Rosen EM (2001) Disruption of BRCA1 LXCXE motif alters BRCA1 functional activity and regulation of RB family but not RB protein binding. Oncogene 20(35):4827–4841. doi:10.1038/sj.onc.1204666

    Article  PubMed  CAS  Google Scholar 

  13. Zhu L, Harlow E, Dynlacht BD (1995) p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev 9(14):1740–1752

    Article  PubMed  CAS  Google Scholar 

  14. Takeda DY, Wohlschlegel JA, Dutta A (2001) A bipartite substrate recognition motif for cyclin-dependent kinases. J Biol Chem 276(3):1993–1997. doi:10.1074/jbc.M005719200

    Article  PubMed  CAS  Google Scholar 

  15. Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71(4):543–546

    Article  PubMed  CAS  Google Scholar 

  16. O’Connell MJ, Walworth NC, Carr AM (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10(7):296–303

    Article  PubMed  Google Scholar 

  17. Wu FY, Wang SE, Sanders ME, Shin I, Rojo F, Baselga J, Arteaga CL (2006) Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity. Cancer Res 66(4):2162–2172. doi:10.1158/0008-5472.CAN-05-3304

    Article  PubMed  CAS  Google Scholar 

  18. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112

    Article  PubMed  CAS  Google Scholar 

  19. Sui G, Soohoo C, el Affar B, Gay F, Shi Y, Forrester WC (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99(8):5515–5520. doi:10.1073/pnas.082117599

    Article  PubMed  CAS  Google Scholar 

  20. Koehler DR, Martin B, Corey M, Palmer D, Ng P, Tanswell AK, Hu J (2006) Readministration of helper-dependent adenovirus to mouse lung. Gene Ther 13(9):773–780. doi:10.1038/sj.gt.3302712

    Article  PubMed  CAS  Google Scholar 

  21. Palmer DJ, Ng P (2005) Helper-dependent adenoviral vectors for gene therapy. Hum Gene Ther 16(1):1–16. doi:10.1089/hum.2005.16.1

    Article  PubMed  CAS  Google Scholar 

  22. Palmer DJ, Ng P (2008) Methods for the production of helper-dependent adenoviral vectors. Methods Mol Biol 433:33–53. doi:10.1007/978-1-59745-237-3_3

    Article  PubMed  CAS  Google Scholar 

  23. Cao HB, Wang A, Martin B, Koehler DR, Zeitlin PL, Tanawell AK, Hu J (2005) Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference. Cell Res 15(2):111–119. doi:10.1038/sj.cr.7290275

    Article  PubMed  CAS  Google Scholar 

  24. Cho JH, Kim HB, Kim HS, Choi SB (2008) Identification and characterization of a rice MCM2 homologue required for DNA replication. BMB Rep 41(8):581–586

    Article  PubMed  CAS  Google Scholar 

  25. Chuang CH, Wallace MD, Abratte C, Southard T, Schimenti JC (2010) Incremental genetic perturbations to MCM2-7 expression and subcellular distribution reveal exquisite sensitivity of mice to DNA replication stress. PLoS Genet 6(9). doi:10.1371/journal.pgen.1001110

  26. Kunnev D, Rusiniak ME, Kudla A, Freeland A, Cady GK, Pruitt SC (2010) DNA damage response and tumorigenesis in Mcm2-deficient mice. Oncogene 29(25):3630–3638. doi:10.1038/onc.2010.125

    Article  PubMed  CAS  Google Scholar 

  27. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139(4):719–730. doi:10.1016/j.cell.2009.10.015

    Article  PubMed  CAS  Google Scholar 

  28. Czyzewska J, Guzinska-Ustymowicz K, Pryczynicz A, Kemona A, Bandurski R (2009) Immunohistochemical evaluation of Ki-67, PCNA and MCM2 proteins proliferation index (PI) in advanced gastric cancer. Folia Histochem Cytobiol 47(2):289–296. doi:10.2478/v10042-009-0042-y

    Article  PubMed  Google Scholar 

  29. Hanna-Morris A, Badvie S, Cohen P, McCullough T, Andreyev HJ, Allen-Mersh TG (2009) Minichromosome maintenance protein 2 (MCM2) is a stronger discriminator of increased proliferation in mucosa adjacent to colorectal cancer than Ki-67. J Clin Pathol 62(4):325–330. doi:10.1136/jcp.2007.054643

    Article  PubMed  CAS  Google Scholar 

  30. Yang J, Ramnath N, Moysich KB, Asch HL, Swede H, Alrawi SJ, Huberman J, Geradts J, Brooks JS, Tan D (2006) Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer 6:203. doi:10.1186/1471-2407-6-203

    Article  PubMed  Google Scholar 

  31. Cho Mar K, Eimoto T, Nagaya S, Tateyama H (2006) Cell proliferation marker MCM2, but not Ki67, is helpful for distinguishing between minimally invasive follicular carcinoma and follicular adenoma of the thyroid. Histopathology 48(7):801–807. doi:10.1111/j.1365-2559.2006.02430.x

    Article  PubMed  CAS  Google Scholar 

  32. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501

    Article  PubMed  CAS  Google Scholar 

  33. Poole AJ, Heap D, Carroll RE, Tyner AL (2004) Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene 23(49):8128–8134. doi:10.1038/sj.onc.1207994

    Article  PubMed  CAS  Google Scholar 

  34. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92(18):8493–8497

    Article  PubMed  CAS  Google Scholar 

  35. Cayrol C, Knibiehler M, Ducommun B (1998) p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene 16(3):311–320. doi:10.1038/sj.onc.1201543

    Article  PubMed  CAS  Google Scholar 

  36. Choi YH, Lee WH, Park KY, Zhang L (2000) p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn J Cancer Res 91(2):164–173

    Article  PubMed  CAS  Google Scholar 

  37. Jiemjit A, Fandy TE, Carraway H, Bailey KA, Baylin S, Herman JG, Gore SD (2008) p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. Oncogene 27(25):3615–3623. doi:10.1038/sj.onc.1211018

    Article  PubMed  CAS  Google Scholar 

  38. Park JK, Jung HY, Park SH, Kang SY, Yi MR, Um HD, Hong SH (2008) Combination of PTEN and gamma-ionizing radiation enhances cell death and G(2)/M arrest through regulation of AKT activity and p21 induction in non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 70(5):1552–1560. doi:10.1016/j.ijrobp.2007.11.069

    Article  PubMed  CAS  Google Scholar 

  39. Archer SY, Johnson JJ, Kim HJ, Hodin RA (2001) p21 gene regulation during enterocyte differentiation. J Surg Res 98(1):4–8. doi:10.1006/jsre.2001.6147

    Article  PubMed  CAS  Google Scholar 

  40. Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19(3):2109–2117

    PubMed  CAS  Google Scholar 

  41. Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD (2003) The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22(24):6610–6620. doi:10.1093/emboj/cdg630

    Article  PubMed  CAS  Google Scholar 

  42. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304(5667):93–96. doi:10.1126/science.1091496

    Article  PubMed  CAS  Google Scholar 

  43. Lee JH, Paull TT (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26(56):7741–7748. doi:10.1038/sj.onc.1210872

    Article  PubMed  CAS  Google Scholar 

  44. Cheng Q, Chen J (2010) Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9(3):472–478

    Article  PubMed  CAS  Google Scholar 

  45. Lavin MF, Kozlov S, Gueven N, Peng C, Birrell G, Chen P, Scott S (2005) ATM and cellular response to DNA damage. Adv Exp Med Biol 570:457–476. doi:10.1007/1-4020-3764-3_16

    Article  PubMed  CAS  Google Scholar 

  46. Bravo R, Macdonald-Bravo H (1985) Changes in the nuclear distribution of cyclin (PCNA) but not its synthesis depend on DNA replication. EMBO J 4(3):655–661

    PubMed  CAS  Google Scholar 

  47. Celis JE, Madsen P, Nielsen HV, Gesser B, Rasmussen HH, Cruger D (1988) Cyclin/PCNA is a cell cycle modulated nuclear protein with a role in DNA replication. Arch Biol Med Exp (Santiago) 21(3–4):417–421

    CAS  Google Scholar 

  48. Tan EM, Ogata K, Takasaki Y (1987) PCNA/cyclin: a lupus antigen connected with DNA replication. J Rheumatol Suppl 14(Suppl 13):89–96

    PubMed  Google Scholar 

  49. Dutertre M, Vagner S, Auboeuf D (2010) Alternative splicing and breast cancer. RNA Biol 7(4):403–411

    Article  PubMed  CAS  Google Scholar 

  50. David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24(21):2343–2364. doi:10.1101/gad.1973010

    Article  PubMed  CAS  Google Scholar 

  51. Rajan P, Elliott DJ, Robson CN, Leung HY (2009) Alternative splicing and biological heterogeneity in prostate cancer. Nat Rev Urol 6(8):454–460. doi:10.1038/nrurol.2009.125

    Article  PubMed  CAS  Google Scholar 

  52. Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64(21):7647–7654. doi:10.1158/0008-5472.CAN-04-1910

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by grants from the Canadian Institutes of Health Research to JH and Heart and Stroke Foundation of Canada to XYW. RG is an awardee of the Chinese Scholarship Council (CSC).

Conflict of interest

None of the authors has any type of conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jim Hu or Zhuchu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 2,609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, R., Wen, XY., Wu, J. et al. Knockdown of ZNF403 inhibits cell proliferation and induces G2/M arrest by modulating cell-cycle mediators. Mol Cell Biochem 365, 211–222 (2012). https://doi.org/10.1007/s11010-012-1262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1262-6

Keywords

Navigation