Skip to main content
Log in

Veratric acid ameliorates hyperlipidemia and oxidative stress in Wistar rats fed an atherogenic diet

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An investigation was made to reveal the protective effects of veratric acid (VA), a phenolic acid against atherogenic diet-induced hyperlipidemic rats. Male albino Wistar rats were fed with atherogenic diet (4% cholesterol, 1% cholic acid, and 0.5% 2-thiouracil) daily for 30 days and treated with VA (40 mg/kg body weight) daily for a period of 30 days. Rats fed with atherogenic diet showed significant (P < 0.05) elevation in the level of plasma lipids, systolic and diastolic blood pressure, oxidative stress markers (thiobarbituric acid reactive substances, lipid peroxides) and significant (P < 0.05) reduction in the activities of enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (vitamin C, vitamin E, and reduced glutathione) antioxidants in erythrocytes, plasma, and tissues (liver, kidney, and aorta). Oral administration of VA (40 mg/kg body weight) for 30 days to atherogenic diet fed rats markedly attenuates systolic, diastolic blood pressure and lipid peroxidation products. Further, VA treatment significantly improved enzymatic and non-enzymatic antioxidants levels and showed beneficial effects on lipid profile in atherogenic diet rats. All the above alterations were supported by histopathological observations. These results indicate that oral administration of VA ameliorates atherogenic diet-induced hyperlipidemia in rats by its free radical scavenging; improving the antioxidants and lipid lowering properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217. doi:10.1038/nm1102-1211

    Article  PubMed  CAS  Google Scholar 

  2. Soufi M, Sattler AM, Herzum M, Maisch B, Schaefer JR (2006) Molecular basis of obesity and the risk for cardiovascular disease. Herz 31:200–206. doi:10.1007/s00059-006-2801-2

    Article  PubMed  Google Scholar 

  3. Yan LP, Chan SW, Chan ASC, Chen SL, Ma XJ, Xu HX (2006) Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats. Life Sci 79:324–330. doi:10.1016/j.lfs.2006.01.016

    Article  PubMed  CAS  Google Scholar 

  4. Bocan TM (1998) Animal models of atherosclerosis and interpretation of drug intervention studies. Curr Pharm Des 4:37–52

    PubMed  CAS  Google Scholar 

  5. Gupta PP, Tandon HD, Ramalingaswami V (1976) Cirrhosis of the liver in rabbits induced by a high cholesterol diet—an experimental model. Indian J Med Res 64:1516–1526

    PubMed  CAS  Google Scholar 

  6. Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk B (2000) Fatty infiltration of liver in hyperlipidemic patients. Dig Dis Sci 45:1929–1934. doi:10.1023/A:1005661516165

    Article  PubMed  CAS  Google Scholar 

  7. Stehbens W (1986) An appraisal of cholesterol feeding in experimental atherosclerosis. Prog Cardiovasc Dis 29:107–128

    Article  PubMed  CAS  Google Scholar 

  8. Bulur H, Ozdemirler G, Oz B, Toker G, Ozturk M, Uysal M (1995) High cholesterol diet supplemented with sunflower seed oil but not olive oil stimulates lipid peroxidation in plasma, liver, and aorta of rats. J Nutr Biochem 6:547–550

    Article  CAS  Google Scholar 

  9. Halliwell B (1996) Mechanisms involved in the generation of free radicals. Pathol Biol (Paris) 44:6–13

    CAS  Google Scholar 

  10. Shi WB, Haberland ME, Jien ML, Shih DM, Lusis AJ (2000) Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102:75–81. doi:10.1161/01.CIR.102.1.75

    PubMed  CAS  Google Scholar 

  11. Parthasarathy S, Santanam N, Ramachandran S, Meilhac O (2000) Potential role of oxidized lipids and lipoproteins in antioxidant defense. Free Radic Res 33:197–215

    Article  PubMed  CAS  Google Scholar 

  12. Ramesh E, Jayakumar T, Elanchezhian R, Sakthivel M, Geraldine P, Thomas PA (2009) Green tea catechins, alleviate hepatic lipidemic-oxidative injury in Wistar rats fed an atherogenic diet. Chem Biol Interact 180:10–19. doi:10.1016/j.cbi.2009.02.013

    Article  PubMed  CAS  Google Scholar 

  13. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ (2003) Phytoestrogens: recent developments. Planta Med 69:589–599. doi:10.1055/s-2003-41122

    Article  PubMed  CAS  Google Scholar 

  14. Narasimhan B, Ohlan S, Ohlan R, Judge V, Narang R (2009) Hansch analysis of veratric acid derivatives as antimicrobial agents. Eur J Med Chem 44:689–700. doi:10.1016/j.ejmech.2008.05.008

    Article  PubMed  CAS  Google Scholar 

  15. Szwajgier D, Pielecki J, Targonski Z (2005) Antioxidant activity of cinnamic and benzoic acid derivatives. Acta Sci Pol Technol Alim 4:129–149

    CAS  Google Scholar 

  16. Saravanakumar M, Raja B (2011) Veratric acid, a phenolic acid, attenuates blood pressure and oxidative stress in l-NAME induced hypertensive rats. Eur J Pharm 671:87–94. doi:10.1016/j.ejphar.2011.08.052

    Article  CAS  Google Scholar 

  17. Folch J, Lees M, Sloane Stanly GH (1975) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  18. Allain CC, Poon LS, Chan CS (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    PubMed  CAS  Google Scholar 

  19. McGowan MW, Artiss JD, Strandbergh DR (1983) A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29:538–542

    PubMed  CAS  Google Scholar 

  20. Falholt K, Lund B, Falholt W (1973) An easy colorimetric method for routine determination of free fatty acids in the plasma. Clin Chim Acta 46:105–111

    Article  PubMed  CAS  Google Scholar 

  21. Zilversmit DB, Davis AK (1950) Micro-determination of plasma phospholipids by TCA precipitation. J Lab Clin Med 35:155–161

    PubMed  CAS  Google Scholar 

  22. Izzo C, Grillo F, Murador E (1981) Improved method for the determination of high density lipoprotein cholesterol. Clin Chem 27:371–374

    PubMed  CAS  Google Scholar 

  23. Friedwald WT, Levy RJ, Fredricken DS (1972) Estimation of VLDL-cholesterol in the plasma without the use of preparative ultracentrifuge. Clin Chem 18:449–502

    Google Scholar 

  24. Fraga CG, Leibovitz BE, Topple AL (1988) Lipid peroxidation measured as thiobarbituric acid reactive substances in tissue slices: characterization and comparison with homogenate and microsomes. Free Radic Biol Med 4:155–161

    Article  PubMed  CAS  Google Scholar 

  25. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxides in low-density lipoprotein. Anal Biochem 202:384–389

    Article  PubMed  CAS  Google Scholar 

  26. Rao KS, Recknagel RO (1968) Early onset of lipoperoxidation in rat liver after carbon tetrachloride administration. Exp Mol Pathol 9:271–278

    Article  PubMed  CAS  Google Scholar 

  27. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  28. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  29. Rotruck JT, Pope AL, Ganther HE, Swason AB, Hafeman DG, Hoekstra WG (1973) Selenium; biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  31. Omaye ST, Turnbull TO, Sauberlich HE (1979) Selected methods for determination of ascorbic acid in cells, tissues and fluids. Methods Enzymol 6:3–11

    Article  Google Scholar 

  32. Baker H, Frank O, De Angelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536

    CAS  Google Scholar 

  33. Ellman GL (1959) Tissue sulfhydyl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  34. Wissler RW (1992) Theories and new horizons in the pathogenesis of atherosclerosis and the mechanisms of clinical effects. Arch Pathol Lab Med 116:1281–1291

    PubMed  CAS  Google Scholar 

  35. Wickens AP (2001) Aging and the free radical theory. Resp Physiol 128:379–391

    Article  CAS  Google Scholar 

  36. Katakami N, Sakamoto K, Kaneto H, Matsuhisa M, Shimizu I, Ishibashi F, Osonoi T, Kashiwagi A, Kawamori R, Hori M, Yamasaki Y (2009) Combined effect of oxidative stress-related gene polymorphisms on atherosclerosis. Bioche and Biophy Res Comm 379:861–865. doi:10.1016/j.bbrc.2008.12.154

    Article  CAS  Google Scholar 

  37. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  38. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  39. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  PubMed  CAS  Google Scholar 

  40. Prasad K, Kalra J (1993) Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 125:958–973

    Article  PubMed  CAS  Google Scholar 

  41. Sheela CG, Angusti K (1995) Antiperoxide effects of S-allyl cysteine sulphoxide isolated from Allium sativum Linn and gugulipid in cholesterol diet fed rats. Indian J Exp Biol 33:337–341

    PubMed  CAS  Google Scholar 

  42. Babu PV, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15:1840–1850

    Article  PubMed  CAS  Google Scholar 

  43. Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347. doi:10.1146/annurev.nu.16.070196.001541

    Article  PubMed  CAS  Google Scholar 

  44. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Investig 47:412–426

    PubMed  CAS  Google Scholar 

  45. Mattila P, Kumpulainen J (2002) Determination of free and total phenolic acids in plant-derived foods by high performance liquid chromatography with diode-array detection. J Agric Food Chem 50:3660–3667. doi:10.1021/jf020028p

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clinical Investig 52:1544–1568. doi:10.1172/JCI107332

    Article  CAS  Google Scholar 

  47. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V (1987) Helsinki heart study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk actors, and incidence of coronary heart disease. New Eng J Med 317:1237–1245

    Article  PubMed  CAS  Google Scholar 

  48. Deepa PR, Varlakshmi P (2006) Favourable modulation of the inflammatory changes in hypercholesterolemic atherogenesis by a low molecular weight heparin derivative. Int J Cardiol 106:338–347. doi:10.1016/j.ijcard.2005.02.012

    Article  PubMed  CAS  Google Scholar 

  49. Thompson GR, Barter PJ (1999) Clinical lipidology at the end of the millennium. Curr Opin Lipidol 10:521–526

    Article  PubMed  CAS  Google Scholar 

  50. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F (1998) Triglyceride concentration and ischemic heart disease: an eight-year follow-up in the Copenhagen male study. Circulation 97:1029–1036

    PubMed  CAS  Google Scholar 

  51. Navab M, Hama SY, Hough GP, Hedrick CC, Sorenson R, La DB, Kobashigawa JA, Fonarow GC, Berliner JA, Laks H, Fogelman AM (1998) High density associated enzymes: their role in vascular biology. Curr Opin Lipidol 9:449–456

    Article  PubMed  CAS  Google Scholar 

  52. Deepa PR, Varlakshmi P (2004) Protective effects of certoparin sodium, a low molecular weight heparin derivative, in experimental atherosclerosis. Clin Chim Acta 339:105–115. doi:10.1016/j.cccn.2003.09.021

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boobalan Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, B., Saravanakumar, M. & Sathya, G. Veratric acid ameliorates hyperlipidemia and oxidative stress in Wistar rats fed an atherogenic diet. Mol Cell Biochem 366, 21–30 (2012). https://doi.org/10.1007/s11010-012-1278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1278-y

Keywords

Navigation