Skip to main content
Log in

Ectoenzymes and cholinesterase activity and biomarkers of oxidative stress in patients with lung cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to examine the nucleoside triphosphate diphosphohydrolases (NTPDase) in lymphocytes; adenosine deaminase (ADA) and butyrylcholinesterase (BChE) in serum; and acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT) activity in whole blood; since these enzymes are involved in inflammation responses as well as in oxidative stress conditions. We also checked the levels of total thiols (T-SH), non-protein thiols (NPSH), and thiobarbituric acid reactive substances (TBARS) in serum of patients with lung cancer. We collected blood samples from patients (n = 31) previously treated for lung cancer with chemotherapy. Patients were classified as stage IIIb and IV according to the Union for International Cancer Control (UICC). The results showed a significant increase in the hydrolysis of ATP, ADP, and adenosine in patients when compared with the control group. The activity of AChE, SOD, and CAT as well as the T-SH and NPSH levels were higher in patients group and TBARS levels were lower in patients compared with the control group. These findings demonstrated that the enzymes activity involved in the control of inflammatory and immune processes as well as the oxidative stress parameters are altered in patients with lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guerra MR, Gallo CVM, Mendonça GAS (2005) Riscos de câncer no Brasil: tendências e estudos epidemiológicos mais recentes. Rev Bras Cancerol 51:227–234

    Google Scholar 

  2. Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, Zhu B (2010) Association between CYP2E1 genetic polymorphisms and lung cancer risk: a metaanalysis. Eur J Cancer 46:758–764

    Article  PubMed  CAS  Google Scholar 

  3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  4. International Agency of Research on Cancer (2004) IARC Monographs on the evaluation of carcinogenic risks to humans: tobacco smoke and involuntary smoking. IARC Press, France

    Google Scholar 

  5. Sasco AJ, Secretan MB, Straif K (2004) Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 45:3–9

    Article  Google Scholar 

  6. Sime PJ, O’Reilly KM (2001) Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 99:308–319

    Article  PubMed  CAS  Google Scholar 

  7. Thannickal VJ, Toews GB, White ES, Lynch JP, Martinez FJ (2004) Mechanisms of pulmonary fibrosis. Annu Rev Med 55:395–417

    Article  PubMed  CAS  Google Scholar 

  8. Barankiewicz J, Dosch HM, Cohen A (1988) Extracellular nucleotide catabolism in human B and T lymphocytes: the source of adenosine production. J Biol Chem 263:7094–7098

    PubMed  CAS  Google Scholar 

  9. Leal DBR, Streher CA, Neu TN, Bittencourt FP, Leal CAM, Silva JEP, Morsch VM, Schetinger MRC (2005) Characterization of NTPDase (NTPDase 1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta 1721:9–15

    Article  PubMed  CAS  Google Scholar 

  10. Zimmermann H (2008) ATP and acetylcholine, equal brethren. Neurochem Int 52:634–648

    Article  PubMed  CAS  Google Scholar 

  11. Filippini A, Taffs RE, Agui T, Sitkovsky MV (1990) Ecto-ATPase activity in cytolytic T-lymphocytes, protection from the cytolytic effects of extracellular ATP. J Biol Chem 265:334–340

    PubMed  CAS  Google Scholar 

  12. Gessi K, Varani S, Merighi S (2007) Adenosine and lymphocyte regulation. Purinergic Signal 3:109–116

    Article  PubMed  CAS  Google Scholar 

  13. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87:161–173

    Article  PubMed  CAS  Google Scholar 

  14. Almeida JPL, Saldanha C (2010) Nonneuronal cholinergic system in human erythrocytes: biological role and clinical relevance. J Membr Biol 234:227–234

    Article  PubMed  CAS  Google Scholar 

  15. Tayebati SK, El-Assouad D, Ricci A, Amenta F (2002) Immunological and immunocytochemical characterization of cholinergic markers in human peripheral blood lymphocytes. J Neuroimmunol 132:147–155

    Article  PubMed  CAS  Google Scholar 

  16. Ardies CM (2003) Inflammation as cause for scar cancers of the lung. Integr Cancer Ther 2:238–246

    Article  PubMed  Google Scholar 

  17. Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB (2004) Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14:259–266

    Article  PubMed  Google Scholar 

  18. Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health 11:1–15

    CAS  Google Scholar 

  19. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  PubMed  CAS  Google Scholar 

  20. Dargel R (1992) Lipid peroxidation—a common pathogenetic mechanism? Exp Toxic Pathol 44:169–181

    Article  CAS  Google Scholar 

  21. Barouki YM (1999) Repression of gene expression by oxidative stress. Biochem J 342:481–496

    Article  PubMed  Google Scholar 

  22. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42:1032–1040

    Article  PubMed  CAS  Google Scholar 

  23. Karoui H, Hogg N, Fréjaville C, Tordo P, Kalyanaraman B (1996) Characterization of sulfur-centered radical intermediates formed during the oxidation off thiols and sulfite by peroxynitrite-ESR-SPIN trapping and oxygen uptake studies. J Biol Chem 271:6000–6009

    Article  PubMed  CAS  Google Scholar 

  24. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    PubMed  Google Scholar 

  25. Jaques JAS, Rezer JFP, Ruchel JB, Gutierres J, Bairros AV, Farias ILG, Luz SCA, Bertoncheli CM, Schetinger MRV, Morsh VM, Leal DBR (2009) A method for isolation of rat lymphocyte-rich mononuclear cells from lung tissue useful for determination of nucleoside triphosphate diphosphohydrolase activity. Anal Biochem 410:34–39

    Article  Google Scholar 

  26. Bergmeyer HU (1983) Methods of enzymatic analysis. Verlag Chemie, Deerfiled Beach

    Google Scholar 

  27. Chan K, Delfert D, Junger KD (1986) A direct colorimetric assay for the Ca2+-ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  28. Guisti G, Galanti B (1984) Colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim

    Google Scholar 

  29. Ellman GL, Courtney DK, Andres V, Flatherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  30. Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on 15 kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  31. Worek F, Mast U, Kiderlen D, Diepold D, Eyer P (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90

    Article  PubMed  CAS  Google Scholar 

  32. Misra HP, Fridovich I (1972) The role of superoxide anion in autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  33. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25-C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478

    Article  PubMed  CAS  Google Scholar 

  34. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46:639–653

    Article  PubMed  CAS  Google Scholar 

  35. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  36. Jentzsch AM, Bachmann H, Furst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20:251–256

    Article  PubMed  CAS  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254

    Article  Google Scholar 

  38. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  39. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  40. Huang RY, Chen GG (2011) Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim Biophys Acta 1815:158–169

    PubMed  CAS  Google Scholar 

  41. Ralevic V, Burnstock G (2003) Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect 16:133–140

    Article  PubMed  CAS  Google Scholar 

  42. De Cos Escuín JS (2009) El cáncer depulmón en España. Epidemiología, supervivencia y tratamiento actuales. Arch Bronconeumol 45:341–348

    Article  Google Scholar 

  43. Farrow B, Evers BM (2002) Inflammation and the development of pancreatic cancer. Surg Oncol 10:153–169

    Article  PubMed  Google Scholar 

  44. Hastürk S, Kemp B, Kalapurakal SK, Kurie JM, Hong WK, Lee JS (2002) Expression of cyclooxygenase-1 and cyclooxygenase-2 in bronchial epithelium and nonsmall cell lung carcinoma. Cancer 94:1023–1031

    Article  PubMed  Google Scholar 

  45. Martey CA, Pollock SJ, Turner CK, O’Reilly KM, Baglole CJ, Phipps RP, Sime PJ (2004) Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol 287:981–991

    Article  Google Scholar 

  46. Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14:461–469

    Article  PubMed  CAS  Google Scholar 

  47. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    Article  PubMed  CAS  Google Scholar 

  48. Langston H, Ke Y, Gewirtz A, Dombrowski K, Kapp J (2003) Secretion of IL-2 and IFN-y, but not IL-4, by antigen-specific T cells requires extracellular ATP. J Immunol 170:2962–2970

    PubMed  CAS  Google Scholar 

  49. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalysed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  50. Lal H, Munjial SK, Wig U, Saini AS (1987) Serum enzymes in head and neck cancer III. J Laryngol Otol 101:1062–1065

    Article  PubMed  CAS  Google Scholar 

  51. Aghaei M, Karami-Tehrani F, Salami S, Atri M (2005) Adenosine deaminase activity in the serum and malignant tumors of breast cancer: the assessment of isoenzyme ADA1 and ADA2 activities. Clin Biochem 38:887–891

    Article  PubMed  CAS  Google Scholar 

  52. Battisti V, Schetinger MRC, Maders LDK, Santos KF, Bagatini MD, Correa MC, Spanevello RM, Araújo MC, Morsch VM (2009) Changes in acetylcholinesterase (AchE) activity in lymphocytes and whole blood in acute lymphoblastic leukemia patients. Clin Chim Acta 402:114–118

    Article  PubMed  CAS  Google Scholar 

  53. Czura CJ, Tracey KJ (2005) Autonomic neural regulation of immunity. J Intern Med 257:156–166

    Article  PubMed  CAS  Google Scholar 

  54. Slater T, Benedetto C, Burton G, Cheeseman KH, Ingold KU, Nodes JT (1984) Lipid peroxidation in animal tumors: a disturbance in the control of cell division. In: Thaler-Dao H, Paoletti R, Crastes de Faulet A (eds) Icosanoids and cancer, Raven Press, New York, p 21–29

  55. Masotti L, Casali E, Galeotti T (1988) Lipid peroxidation in tumor cells. Free Radic Biol Med 4:377–386

    Article  PubMed  CAS  Google Scholar 

  56. Szabados GY, Tretter L, Horvath I (1989) Lipid peroxidation in liver and Erlich ascites cell mitochondria. Free Radic Res Commun 7:161–170

    Article  PubMed  CAS  Google Scholar 

  57. Cogrel P, Morel I, Lescoat G, Chevanne M, Brissot P, Cillard P, Cillard J (1993) The relationship between fatty acid peroxidation and α-tocopherol consumption in isolated normal and transformed hepatocytes. Lipids 28:115–119

    Article  PubMed  CAS  Google Scholar 

  58. Zaridze DG, Chevchenko VE, Levtshuk AA, Lifanova YE, Maximovitch DM (1990) Fatty acid composition of phospholipids in erythrocyte membranes and risk of breast cancer. Int J Cancer 45:807–810

    Article  PubMed  CAS  Google Scholar 

  59. Seven A, Erbil Y, Seven R, Inci F, Gülyasar T, Barutçu B, Candan G (1998) Breast cancer and benign breast disease patients evaluated in relation to oxidative stress. Cancer Biochem Biophys 16:333–345

    PubMed  CAS  Google Scholar 

  60. Gerber M, Astre C, Segala C, Saintot M, Scali J, Simony-Lafontaine J, Grenier J, Pujol H (1996) Oxidant-antioxidant status alterations in cancer patients: relationship to tumor progression. J Nutr 126:1201–1207

    Google Scholar 

  61. Halliwell B, Gutterdige JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  62. De Bona KS, Bellé LP, Bittencourt PER, Bonfanti G, Cargnelluti LO, Pimentel VC, Ruviaro AR, Schetinger MRC, Emanuelli T, Moretto MB (2011) Erythrocytic enzymes and antioxidant status in patients with type 2 diabetes: benefic effect of Syzygium cumini leaf extract in vitro. Diabetes Res Clin Pract. doi:10.1016/j.diabres.2011.06.008

    PubMed  Google Scholar 

  63. Gupta A, Srivastava S, Prasad R, Natu SM, Mittal B, Negi MPS, Srivastava NA (2010) Oxidative stress in non-small cell lung cancer patients after chemotherapy: association with treatment response. Respirology 15:349–356

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the lung cancer patients and the professionals at the Hematology/Oncology Laboratory (HUSM) for their support. This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Instituto Brasileiro de Neurociência (IBN-Net), INCT for Excitotoxicity and Neuroprotection, and the Federal University of Santa Maria, RS, Brazil.

Disclosures

This work is original and is not under consideration by another journal. All the patients signed the written consent and the work was approved by the Human Ethical Committee from the Federal University of Santa Maria Hospital. Finally, this manuscript has been approved by all authors and has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Zanini or Maria Rosa Chitolina Schetinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanini, D., Schmatz, R., Pelinson, L.P. et al. Ectoenzymes and cholinesterase activity and biomarkers of oxidative stress in patients with lung cancer. Mol Cell Biochem 374, 137–148 (2013). https://doi.org/10.1007/s11010-012-1513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1513-6

Keywords

Navigation