Skip to main content
Log in

ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3K/Akt pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A disintegrin and metalloproteinase-17 (ADAM17) is a member of the metalloproteinase superfamily and involved in the cleavage of ectodomain of many transmembrane proteins. ADAM17 is overexpressed in a variety of human tumors, which is associated with tumor development and progression. In the present study, we sought to investigate the expression and function of ADAM17 in hypoxia-treated hepatocellular carcinoma (HCC) cells. Western blot analysis was used to measure the expression of ADAM17 in HCC cell lines (Hep3B and HepG2 cells). Annexin V/PI double staining was performed to analyze the effects of ADAM17 on hypoxia-mediated cisplatin resistance. ADAM17 expression was upregulated by hypoxia treatment in HCC cells at both mRNA and protein levels. Overexpression of ADAM17 reduced cisplatin-induced apoptosis in HCC cells, accompanies by less cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP). Forced expression of ADAM17 enhanced the phosphorylation of epidermal growth factor receptor (EGFR) and Akt without affecting the expression of total EGFR and Akt. Pretreatment with EGFR inhibitor AG1478 or phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 rescued ADAM17-mediated cisplatin resistance of HCC cells. ADAM17 silencing attenuated hypoxia-induced cisplatin resistance and enhanced the accumulation of cleaved caspase-3 and PARP. Western blot analysis showed that overexpression of hypoxia-inducible factor-1α (HIF-1α), a transcription factor, upregulated the expression of ADAM17 and HIF-1α silencing downregulated the expression of ADAM17 in hypoxia-treated HCC cells, indicating the regulation of ADAM17 by HIF-1α. Taken together, our results indicated that ADAM17 is upregulated by hypoxia and contributes to hypoxia-induced cisplatin resistance via EGFR/PI3K/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028

    Article  CAS  PubMed  Google Scholar 

  2. Wu XZ, Xie GR, Chen D (2007) Hypoxia and hepatocellular carcinoma: the therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol 22:1178–1182

    Article  CAS  PubMed  Google Scholar 

  3. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  4. Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, Han S, Liu J, Sun S, Han Z, Wu K, Fan D (2008) Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 99:121–128

    CAS  PubMed  Google Scholar 

  5. Arsham AM, Plas DR, Thompson CB, Simon MC (2004) Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis. Cancer Res 64:3500–3507

    Article  CAS  PubMed  Google Scholar 

  6. Mizukami Y, Li J, Zhang X, Zimmer MA, Iliopoulos O, Chung DC (2004) Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 64:1765–1772

    Article  CAS  PubMed  Google Scholar 

  7. Liu G, Roy J, Johnson EA (2006) Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics 25:134–141

    Article  PubMed  Google Scholar 

  8. Black RA (2002) Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol 34:1–5

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimura T, Tomita T, Dixon MF, Axon AT, Robinson PA, Crabtree JE (2002) ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. J Infect Dis 185:332–340

    Article  CAS  PubMed  Google Scholar 

  10. Ding X, Yang LY, Huang GW, Wang W, Lu WQ (2004) ADAM17 mRNA expression and pathological features of hepatocellular carcinoma. World J Gastroenterol 10:2735–2739

    CAS  PubMed  Google Scholar 

  11. Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG, Laboisse CL, Mosnier JF (2005) Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J Pathol 207:156–163

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X, Jiang F, Katakowski M, Zhang ZG, Lu QE, Chopp M (2009) ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation. Cancer Biol Ther 8:1045–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Szalad A, Katakowski M, Zheng X, Jiang F, Chopp M (2009) Transcription factor Sp1 induces ADAM17 and contributes to tumor cell invasiveness under hypoxia. J Exp Clin Cancer Res 28:129

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rzymski T, Petry A, Kračun D, Rieß F, Pike L, Harris AL, Görlach A (2012) The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 31:3621–3634

    Article  CAS  PubMed  Google Scholar 

  15. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X, Zhang ZG, Yang H, Chopp M (2007) Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci 98:674–684

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Zhu XD, Wang WQ, Shen Y, Qin Y, Ren ZG, Sun HC, Tang ZY (2010) Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res 16:2740–2750

    Article  CAS  PubMed  Google Scholar 

  17. Etzerodt A, Maniecki MB, Møller K, Møller HJ, Moestrup SK (2010) Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J Leukoc Biol 88:1201–1205

    Article  CAS  PubMed  Google Scholar 

  18. Lau CK, Yang ZF, Lam SP, Lam CT, Ngai P, Tam KH, Poon RT, Fan ST (2007) Inhibition of Stat3 activity by YC-1 enhances chemo-sensitivity in hepatocellular carcinoma. Cancer Biol Ther 6:1900–1907

    Article  CAS  PubMed  Google Scholar 

  19. Katakowski M, Jiang F, Zheng X, Gutierrez JA, Szalad A, Chopp M (2009) Tumorigenicity of cortical astrocyte cell line induced by the protease ADAM17. Cancer Sci 100:1597–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Katakowski M, Chen J, Zhang ZG, Santra M, Wang Y, Chopp M (2007) Stroke-induced subventricular zone proliferation is promoted by tumor necrosis factor-alpha-converting enzyme protease activity. J Cereb Blood Flow Metab 27:669–678

    CAS  PubMed  Google Scholar 

  21. Lemjabbar H, Li D, Gallup M, Sidhu S, Drori E, Basbaum C (2003) Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor alpha-converting enzyme and amphiregulin. J Biol Chem 278:26202–26207

    Article  CAS  PubMed  Google Scholar 

  22. Borrell-Pages M, Rojo F, Albanell J, Baselga J, Arribas J (2003) TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J 22:1114–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kyula JN, Van Schaeybroeck S, Doherty J, Fenning CS, Longley DB, Johnston PG (2010) Chemotherapy-induced activation of ADAM-17: a novel mechanism of drug resistance in colorectal cancer. Clin Cancer Res 16:3378–3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kagawa K, Nakano A, Miki H, Oda A, Amou H, Takeuchi K, Nakamura S, Harada T, Fujii S, Yata K, Ozaki S, Matsumoto T, Abe M (2012) Inhibition of TACE activity enhances the susceptibility of myeloma cells to TRAIL. PLoS ONE 7:e31594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Liu WH, Chang LS (2010) Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells: Bungarus multicinctus protease inhibitor-like protein-1 uncovers the cytotoxic mechanism. J Biol Chem 285:30506–30515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hilliard VC, Frey MR, Dempsey PJ, Peek RM Jr, Polk DB (2011) TNF-α converting enzyme-mediated ErbB4 transactivation by TNF promotes colonic epithelial cell survival. Am J Physiol Gastrointest Liver Physiol 301:G338–G346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lizama C, Rojas-Benítez D, Antonelli M, Ludwig A, Bustamante-Marín X, Brouwer-Visser J, Moreno RD (2010) TACE/ADAM17 is involved in germ cell apoptosis during rat spermatogenesis. Reproduction 140:305–317

    Article  CAS  PubMed  Google Scholar 

  28. Arribas J, Esselens C (2009) ADAM17 as a therapeutic target in multiple diseases. Curr Pharm Des 15:2319–2335

    Article  CAS  PubMed  Google Scholar 

  29. Zheng X, Jiang F, Katakowski M, Lu Y, Chopp M (2012) ADAM17 promotes glioma cell malignant phenotype. Mol Carcinog 51:150–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zheng X, Jiang F, Katakowski M, Zhang X, Jiang H, Zhang ZG, Chopp M (2008) Sensitization of cerebral tissue in nude mice with photodynamic therapy induces ADAM17/TACE and promotes glioma cell invasion. Cancer Lett 265:177–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lin P, Sun X, Feng T, Zou H, Jiang Y, Liu Z, Zhao D, Yu X (2012) ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol Cell Biochem 359:235–243

    Article  CAS  PubMed  Google Scholar 

  32. Thabet MM, Huizinga TW (2006) Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr Opin Investig Drugs 7:1014–1019

    CAS  PubMed  Google Scholar 

  33. Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group trial E2196. J Clin Oncol 22:4683–4690

    Article  CAS  PubMed  Google Scholar 

  34. Tape CJ, Willems SH, Dombernowsky SL, Stanley PL, Fogarasi M, Ouwehand W, McCafferty J, Murphy G (2011) Cross-domain inhibition of TACE ectodomain. Proc Natl Acad Sci USA 108:5578–5583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Richards FM, Tape CJ, Jodrell DI, Murphy G (2012) Anti-tumour effects of a specific anti-ADAM17 antibody in an ovarian cancer model in vivo. PLoS ONE 7:e40597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    Article  PubMed  Google Scholar 

  37. Jiang J, Tang YL, Liang XH (2011) EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther 11:714–723

    Article  CAS  PubMed  Google Scholar 

  38. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  CAS  PubMed  Google Scholar 

  39. Charbonneau M, Harper K, Grondin F, Pelmus M, McDonald PP, Dubois CM (2007) Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. J Biol Chem 282:33714–33724

    Article  CAS  PubMed  Google Scholar 

  40. Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, Keogh A, Tschan MP, Candinas D, Vorburger SA, Stroka D (2012) Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS ONE 7:e33433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Saponaro C, Malfettone A, Ranieri G, Danza K, Simone G, Paradiso A, Mangia A (2013) VEGF, HIF-1α expression and MVD as an angiogenic network in familial breast cancer. PLoS ONE 8:e53070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhdanov AV, Dmitriev RI, Papkovsky DB (2012) Bafilomycin A1 activates HIF-dependent signalling in human colon cancer cells via mitochondrial uncoupling. Biosci Rep 32:587–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kanda K, Komekado H, Sawabu T, Ishizu S, Nakanishi Y, Nakatsuji M, Akitake-Kawano R, Ohno M, Hiraoka Y, Kawada M, Kawada K, Sakai Y, Matsumoto K, Kunichika M, Kimura T, Seno H, Nishi E, Chiba T (2012) Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-α. EMBO Mol Med 4:396–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang YY, Lo GH, Lai KH, Cheng JS, Lin CK, Hsu PI (2003) Increased serum concentrations of tumor necrosis factor-alpha are associated with disease progression and malnutrition in hepatocellular carcinoma. J Chin Med Assoc 66:593–598

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xj., Feng, Cw. & Li, M. ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3K/Akt pathway. Mol Cell Biochem 380, 57–66 (2013). https://doi.org/10.1007/s11010-013-1657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1657-z

Keywords

Navigation