Skip to main content
Log in

Nutriepigenetic regulation by folate–homocysteine–methionine axis: a review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blom HJ, Smulders Y (2011) Overview of homocysteine and folate metabolism. With special reference to cardiovascular disease and neural tube defects. J Inherit Metab Dis 34(1):75–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Winkels RM, Brouwer IA, Siebelink E, Katan MB, Verhoef P (2007) Bioavailability of food folates is 80 % that of folic acid. Am J Clin Nutr 85:465–473

    CAS  PubMed  Google Scholar 

  3. Steinfield R, Grapp M, Kraetzner R, Dreha-Kolaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gartner J (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Article  Google Scholar 

  4. Pitkin RM (2007) Folate and neural tube defects. Am J Clin Nutr 85(S):285S–288S

    CAS  PubMed  Google Scholar 

  5. Gupta H, Gupta P (2004) Neural tube defects and folic acid. Ind J Pediatr 41:577–586

    Google Scholar 

  6. Feng S, Jacobsen SE, Reik W (2013) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  Google Scholar 

  7. Wallingford JB, Niswander LA, Shaw GM, Finnel RH (2013) The continuing challenge of understanding, preventing and treating neural tube defects. Science 393(6213):1047–1054

    Google Scholar 

  8. Kobus K, Ammar D, Nazari EM, Muller YMR (2013) Homocysteine causes disruption in spinal cord morphology and changes the expression of Pax1/9 and Sox 9 gene products in the axial mesenchyme. Birth Defects Res 97(6):386–397

    Article  CAS  Google Scholar 

  9. Peters H, Doll U, Neissing J (1995) Differential expression of chicken Pax-1 and Pax-9 gene: in situ hybridization and immunohistochemical analysis. Dev Dyn 203:1–16

    Article  CAS  PubMed  Google Scholar 

  10. Kolling J, Schere EBS, Siebert C, Hansen F, Torres FV, Scaini G, Ferriera G, de Andrade RB, Gonclaves CAS, Streck EL, Wannmacher CMD, Wyse ATS (2012) Homocysteine induces energy imbalance in rat skeletal muscle: Is creatine a protector? Cell Biochem Funct. doi:10.1002/cbf.2938

    PubMed  Google Scholar 

  11. Herrmann W, Herrmann M, Joseph J, Tyagi SC (2007) The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin Chem Lab Med 45:1621–1632

    CAS  PubMed  Google Scholar 

  12. Bhargava S, Ali A, Bhargava EK, Manocha A, Kankra M, Das S, Srivastava LM (2012) Lowering homocysteine and modifying nutritional status with folic acid and vitamin B12 in Indian patients of vascular disease. J Clin Biochem Nutr 50(3):222–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hayden MR, Tyagi SC (2004) Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and artheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J 3:4–27

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tsai EJ, Kass DA (2009) Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 122:216–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Veeranki S, Tyagi SC (2013) Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci 14:15074–15091

    Article  PubMed Central  PubMed  Google Scholar 

  16. Younes M, Dagher GA, Dulanto JV, Njeim M, Kuriakose P (2013) Unexplained macrocytosis. South Med J 106(2):121–125

    Article  PubMed  Google Scholar 

  17. Aslinia F, Mazza JJ, Yale SH (2006) Megaloblastic anemia and other causes of macrocytosis. Clin Med Res 4(3):236–241

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kozlak ST, Walsh SJ, Lalla RV (2010) Reduced dietary intake of vitamin B12 and folate in patients with recurrent aphthous stomatitis. J Oral Pathol Med 39(5):420–423

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Tyagi N, Moshal KS, Tyagi SC, Lominadze D (2007) Gamma-amino buturic acid A receptor mitigates homocysteine-induced endothelial cell permeability. Endothelium 14(6):315–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jacobson W, Saich T, Borysiewicz L, Behan W, Behan P, Wreghitt T (1993) Serum folate and chronic fatigue syndrome. Neurology 43:2645–2647

    Article  CAS  PubMed  Google Scholar 

  21. Lundell K, Qazi S, Eddy L, Uckun FM (2006) Clinical activity of folinic acid in patients with chronic fatigue syndrome. Arzneim Foesch Drug Res 56(6):399–404

    CAS  Google Scholar 

  22. Moretti P, Petrs SU, del Gaudio D, Sahoo T, Hyland K, Bottiglieri T, Hopkin RJ, Peach E, Min SH, Goldman D, Roa B, Bacino CA, Scaglia F (2008) Brief report: autistic symptoms, developemental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J Autism Dev Disord 38:1170–1177

    Article  PubMed  Google Scholar 

  23. Ramaekers VT, Rothenberg SP, Sequeira JM, Opladen T, Blau N, Quadros EV, Selhub J (2005) Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. NEJM 352(19):1985–1991

    Article  CAS  PubMed  Google Scholar 

  24. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhou HR, Zhang FF, Ma ZY, Huang HW, Jiang L, Cai T, Zhu JK, Zhang C, He XJ (2013) Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis. Plant Cell 2013; PMID:23881414

    Google Scholar 

  26. Farkas SA, Böttiger AK, Isaksson HS, Finnell RH, Ren A, Nilsson TK (2013) Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leucocytes from subjects with hyperhomocysteinemia. Epigenetics 8(3):303–316

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Bhargava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, S., Tyagi, S.C. Nutriepigenetic regulation by folate–homocysteine–methionine axis: a review. Mol Cell Biochem 387, 55–61 (2014). https://doi.org/10.1007/s11010-013-1869-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1869-2

Keywords

Navigation