Skip to main content
Log in

RETRACTED ARTICLE: MiRNA-26b inhibits the proliferation, migration, and epithelial–mesenchymal transition of lens epithelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 24 April 2024

This article has been updated

Abstract

MicroRNAs (miRNAs) are a class of small endogenous gene regulators that play important roles in various developmental and pathological processes. However, little is known about the precise identity and functions of miR-26b in posterior capsule opacification (PCO). In this study, we report that the expression of miR-26b is decreased in human PCO-attached lens epithelial cells (LECs) and SRA01/04 cells in the presence of TGF-β2. Overexpression of miR-26b inhibited the proliferation of LECs based on MTT assays and BrdU incorporation assays. In addition, the overexpression of miR-26b inhibited the migration ability of LECs, as shown by wound-healing and transwell migration assays. The overexpression of miR-26b increased the level of the lens epithelial marker E-cadherin and reduced the levels of mesenchymal-related proteins, such as fibronectin, a-SMA, and type I collagen, in SRA01/04 cells in the presence of TGF-β2. Furthermore, the upregulation of E-cadherin and downregulation of mesenchymal-related proteins were induced in human PCO-attached LECs transfected with miR-26b mimics. We further demonstrated that Smad4 and COX-2 are targets of miR-26b in LECs using luciferase reporter assays. These data reveal that miR-26b can inhibit the proliferation, migration, and EMT of lens epithelial cells, and restoration of miRNA-26b may be a potential, novel therapeutic target for the prevention and treatment of posterior capsule opacification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Findl O, Buehl W, Bauer P et al (2010) Interventions for preventing posterior capsule opacification. Cochrane Database Syst Rev 17(2):CD003738

    Google Scholar 

  2. Wormstone IM, Wang L, Liu CS (2009) Posterior capsule opacification. Exp Eye Res 88(2):257–269

    Article  CAS  PubMed  Google Scholar 

  3. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  4. Wolf L, Gao CS, Gueta K et al (2013) Identification and characterization of FGF2-dependent mRNA: microRNA networks during lens fiber cell differentiation. G3 (Bethesda) 3(12):2239–2255

    Article  CAS  PubMed  Google Scholar 

  5. Varma SD, Kovtun S, Hegde K et al (2012) Effect of high sugar levels on miRNA expression. Studies with galactosemic mice lenses. Mol Vis 18:1609–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Varma SD, Kovtun S (2013) Protective effect of caffeine against high sugar-induced transcription of microRNAs and consequent gene silencing: a study using lenses of galactosemic mice. Mol Vis 19:493–500

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoffmann A, Huang Y, Suetsugu-Maki R et al (2012) Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract. Mol Med 18:528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verghese ET, Drury R, Green CA et al (2013) MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol 231(3):388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Li W, Zang X et al (2013) MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4. Invest Ophthalmol Vis Sci 54(1):323–332

    Article  PubMed  Google Scholar 

  10. Li J, Tang X, Chen X (2011) Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line. Exp Eye Res 92(3):173–179

    Article  CAS  PubMed  Google Scholar 

  11. Bao XL, Song H, Chen Z et al (2012) Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis 18:1983–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong N, Li X, Xiao L et al (2012) Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro. Invest Ophthalmol Vis Sci 53(12):7567–7575

    Article  CAS  PubMed  Google Scholar 

  13. Lee EH, Joo CK (1999) Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens epithelial cells. Invest Ophthalmol Vis Sci 40(9):2025–2032

    CAS  PubMed  Google Scholar 

  14. Saika S, Miyamoto T, Kawashima Y et al (2000) Immunolocalization of TGF-beta1, -beta2, and -beta3, and TGF-beta receptors in human lens capsules with lens implants. Graefes Arch Clin Exp Ophthalmol 238(3):283–293

    Article  CAS  PubMed  Google Scholar 

  15. Gordon-Thomson C, de Iongh RU, Hales AM et al (1998) Differential cataractogenic potency of TGF-beta1, -beta2, and -beta3 and their expression in the postnatal rat eye. Invest Ophthalmol Vis Sci 39(8):1399–1409

    CAS  PubMed  Google Scholar 

  16. Sponer U, Pieh S, Soleiman A et al (2005) Upregulation of alphavbeta6 integrin, a potent TGF-beta1 activator, and posterior capsule opacification. J Cataract Refract Surg 31(3):595–606

    Article  PubMed  Google Scholar 

  17. Dawes LJ, Sleeman MA, Anderson IK et al (2009) TGFbeta/Smad4-dependent and -independent regulation of human lens epithelial cells. Invest Ophthalmol Vis Sci 50(11):5318–5327

    Article  PubMed  Google Scholar 

  18. Wormstone IM, Tamiya S, Eldred JA et al (2004) Characterisation of TGF-beta2 signalling and function in a human lens cell line. Exp Eye Res 78(3):705–714

    Article  CAS  PubMed  Google Scholar 

  19. Stoll SW, Rittié L, Johnson JL et al (2012) Heparin-binding EGF-like growth factor promotes epithelial-mesenchymal transition in human keratinocytes. J Invest Dermatol 132(9):2148–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirane A, Toombs JE, Larsen JE et al (2012) Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib. Carcinogenesis 33(9):1639–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  22. Tilley SL, Coffman TM, Koller BH (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest 108(1):15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chandler HL, Barden CA, Lu P et al (2007) Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition. Mol Vis 13:677–691

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji Y, He Y, Liu L et al (2010) MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett 584(5):961–967

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Kong X, Zhang J et al (2013) MiRNA-26b inhibits proliferation by targeting PTGS2 in breast cancer. Cancer Cell Int 13(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research Grants from the National Natural Science Foundation for the Young Scholars of Beijing Shijitan Hospital, Capital Medical University (No. 2013-QB01), and the National Natural Science Foundation of China (No. 81270984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Tang.

Additional information

Ning Dong and Bing Xu have contributed equally to this work.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11010-024-05017-w

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, N., Xu, B., Benya, S.R. et al. RETRACTED ARTICLE: MiRNA-26b inhibits the proliferation, migration, and epithelial–mesenchymal transition of lens epithelial cells. Mol Cell Biochem 396, 229–238 (2014). https://doi.org/10.1007/s11010-014-2158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2158-4

Keywords

Navigation