Skip to main content
Log in

Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Regulated polyubiquitination is a key step for controlling protein degradation and maintaining proper balance between the proliferation of normal and uncontrolled cells. Addition of ubiquitin to the proteins by E3 ubiquitin ligases targets them for degradation by the 26S proteosome machinery. Discrepancies in ubiquitination and/or proteosome degradation might lead to multiple genetic disorders in humans. It is reported that CUL1 and BRCA1 ubiquitin ligases localize on centrosome region and regulate the centrosome duplication cycle for genomic stability. In the current study, we predicted the possible interaction of E3 ubiquitin ligase CUL4A complex with γ-tubulin, a centrosome-specific protein, using bioinformatic protein–protein docking analysis. We also confirmed their interaction by performing co-immunoprecipitation studies using endogenous CUL4A/B and stable cell lines that overexpress Flag-CUL4A or Flag-CUL4B. We additionally noted that the γ-tubulin was polyubiquitinated by CUL4A or 4B immune complex indicating that CUL4A or CUL4B may regulate the stability of γ-tubulin. Furthermore, the inhibition of proteosomal degradation pathway using MG132 or LLNV drugs resulted in accumulation and co-localization of CUL4A with γ-tubulin in the centrosome region. Overall, our observation has identified γ-tubulin as a novel target for E3 ubiquitin ligase CUL4 complex, and might lead to the establishment of a unique mechanism for controlling centrosome stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  2. Bosu DR, Kipreos ET (2008) Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div. 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  3. Jiang YH, Beaudet AL (2004) Human disorders of ubiquitination and proteasomal degradation. Curr Opin Pediatr 16:419–426

    Article  PubMed  Google Scholar 

  4. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  CAS  PubMed  Google Scholar 

  5. Jin J, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23:709–721

    Article  CAS  PubMed  Google Scholar 

  6. Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12:220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li X, Lu D, He F, Zhou H, Liu Q et al (2011) Cullin4B protein ubiquitin ligase targets peroxiredoxin III for degradation. J Biol Chem 286:32344–32354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen LC, Manjeshwar S, Lu Y, Moore D, Ljung BM, Kuo WL, Dairkee SH, Wernick M, Collins C, Smith HS (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res 58:3677–3683

    CAS  PubMed  Google Scholar 

  9. Yasui K, Arii S, Zhao C, Imoto I, Ueda M, Nagai H, Emi M, Inazawa J (2002) TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35:1476–1484

    Article  CAS  PubMed  Google Scholar 

  10. Tarpey PS, Raymond FL, O’Meara S, Edkins S, Teague J, Butler A, Dicks E, Stevens C, Tofts C, Avis T et al (2007) Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet 80:345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H, Li J, Gao G, Guo Y, Yan C et al (2007) Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet 80:561–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H (2006) CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8:1277–1283

    Article  CAS  PubMed  Google Scholar 

  13. Leung-Pineda V, Huh J, Piwnica-Worms H (2009) DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 69:2630–2637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, Kobayashi R, Sun H, Zhang H (2006) L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle 5:1719–1729

    Article  CAS  PubMed  Google Scholar 

  15. Kim Y, Starostina NG, Kipreos ET (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 22:2507–2519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 22:2496–2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li B, Jia N, Waning DL, Yang FC, Haneline LS, Chun KT (2007) Cul4A is required for hematopoietic stem-cell engraftment and self-renewal. Blood 110:2704–2707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6:599–609

    Article  CAS  PubMed  Google Scholar 

  19. Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, Mok SC, Randrianarison V, Brodie S, Salstrom J et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405

    Article  CAS  PubMed  Google Scholar 

  20. Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson P (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13:2242–2257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wojcik EJ, Glover DM, Hays TS (2000) The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr Biol 10:1131–1134

    Article  CAS  PubMed  Google Scholar 

  22. Feng Y, Hodge DR, Palmieri G, Chase DL, Longo DL, Ferris DK. (1999) Association of polo-like kinase with alpha-, beta- and gamma-tubulins in a stable complex. Biochem J (part 2) 339:435–442

  23. Kukharskyy V, Sulimenko V, Macůrek L, Sulimenko T, Dráberová E, Dráber P (2004) Complexes of gamma-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating p19 embryonal carcinoma cells. Exp Cell Res 298:218–228

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J, Ren Y, Jiang Q, Feng J (2003) Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci 116:4011–4019

    Article  CAS  PubMed  Google Scholar 

  25. Herreros L, Rodríguez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabañas C, Sánchez-Madrid F, Longo N, Turner CE, Sánchez-Mateos P (2000) Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J Biol Chem 275:26436–26440

    Article  CAS  PubMed  Google Scholar 

  26. Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Article  PubMed  Google Scholar 

  27. Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD (2004) BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 24:8457–8466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15:345–350

    Article  CAS  PubMed  Google Scholar 

  29. Gstaiger M, Marti A, Krek W (1999) Association of human SCF(SKP2) subunit p19(SKP1) with interphase centrosomes and mitotic spindle poles. Exp Cell Res 247:554–562

    Article  CAS  PubMed  Google Scholar 

  30. Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 3:481–490

    Article  Google Scholar 

  31. Stearns T, Evans L, Kirschner M (1991) g tubulin is a highly conserved component of the centrosome. Cell 65:825–836

    Article  CAS  PubMed  Google Scholar 

  32. Zheng Y, Jung MK, Oakley BR (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65:817–823

    Article  CAS  PubMed  Google Scholar 

  33. Fukasawa K (2005) Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230:6–19

    Article  CAS  PubMed  Google Scholar 

  34. Oakley BR, Oakley CE, Yoon Y, Jung K (1990) γ-tubulin is a component of the spindle pole body that is essential for microtubule formation in Aspergillus nidulans. Cell 61:1289–1301

    Article  CAS  PubMed  Google Scholar 

  35. Gueth-Hallonet C, Antony C, Aghion J, Santa-Maria A, Lajoie-Mazenc I, Wright M, Maro B (1993) γ-tubulin is present in acentriolar MTOCs during early mouse development. J Cell Sci 105:157–166

    CAS  PubMed  Google Scholar 

  36. Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell 76:623–637

    Article  CAS  PubMed  Google Scholar 

  37. Macrae TH (1997) Tubulin Post-Translational Modifications-enzymes and their mechanisms of action. Eur J Biochem 244:65–278

    Article  Google Scholar 

  38. Kuriyama R, Maekawa T (1992) Phosphorylation od a 225 kDa centrosomal component in mitotic CHO cells and sea urchin eggs. Exp Cell Res 202:345–354

    Article  CAS  PubMed  Google Scholar 

  39. Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P (2011) Cul4A is essential for spermatogenesis and male fertility. Dev Biol 352:278–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nag A, Bagchi S, Raychaudhuri P (2004) Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res 64:8152–8155

    Article  CAS  PubMed  Google Scholar 

  41. Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S (2014) E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem 390:93–100

    Article  CAS  PubMed  Google Scholar 

  42. Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S (2013) How good is automated protein docking? Proteins 81:2159–2166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Fischer ES, Scrima A, Bohm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thoma NH (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147:1024–1039

    Article  CAS  PubMed  Google Scholar 

  44. Aldaz H, Rice LM, Stearns T, Agard DA (2005) Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature 435:523–527

    Article  CAS  PubMed  Google Scholar 

  45. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  46. Krissinel E (2010) Crystal contacts as nature’s docking solutions. J Comput Chem 31:133–143

    Article  CAS  PubMed  Google Scholar 

  47. Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (2003) Prophase destruction of Emi1 by the SCF (betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4:813–826

    Article  CAS  PubMed  Google Scholar 

  48. Shinmura K, Bennett RA, Tarapore P, Fukasawa K (2007) Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 26:2939–2944

    Article  CAS  PubMed  Google Scholar 

  49. Sankaran S, Starita LM, Groen AC, Ko MJ, Parvin JD (2005) Centrosomal microtubule nucleation activity is inhibited by BRCA1 dependent ubiquitination. Mol Cell Biol 25:8656–8668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tarapore P, Fukasawa K (2002) Loss of p53 and centrosome hyperamplification. Oncogene 21(40):6234–6240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Pradip Raychaudhuri and Dr. Srilata Bagchi, University of Illinois at Chicago, USA for providing necessary plasmids, technical advice and constant support. We especially thank Drs. Arunkumar Dhayalan and Anil K. Suresh (Ramalingaswamy Fellow) for critical reading of the manuscript. This work is supported by Department of Science and Technology-SERB, INDIA Grants; SR/FT/LS-76/2011and SB/EMEQ-038/2013 to Dr. Sudhakar Baluchamy. Miss. Prachi Singh is a recipient of DBT-JRF. Mr. M. Kannan is a recipient of a Rajiv Gandhi national research fellowship of the UGC (No. F. 14-2(SC)/2009 (SA-III).We apologize for not being able to comprehensively cite references related to CUL4 and centrosome due to focused topics discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Baluchamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirunavukarasou, A., Govindarajalu, G., Singh, P. et al. Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination. Mol Cell Biochem 401, 219–228 (2015). https://doi.org/10.1007/s11010-014-2309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2309-7

Keywords

Navigation