Skip to main content

Advertisement

Log in

Investigation of novel LPS-induced differentially expressed long non-coding RNAs in endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The molecular mechanisms responsible for sepsis-induced endothelial dysfunction leading to an elevated risk of cardiovascular diseases remain undefined. Endotoxic or septic shock is a potentially lethal complication of systemic infection by Gram-negative bacteria. Lipopolysaccharide (LPS) is a critical glycolipid component of the outer wall of Gram-negative bacteria, and many of the sepsis-associated cellular signals by Gram-negative bacteria are attributed to LPS. Given that LPS has an established role in the pathophysiology of sepsis and long non-coding RNAs (lncRNAs) have been reported to critically regulate vascular homeostasis, a systematic transcriptional survey was conducted to evaluate the impact of LPS stimulation on human endothelial lncRNAs and protein-coding transcripts (mRNAs). LncRNAs and mRNAs from LPS-treated (100 ng/mL; 24 h) human umbilical vein endothelial cells (HUVECs) were profiled with the Arraystar Human lncRNA Expression Microarray V3.0. Of the 30,584 lncRNAs screened, 871 were significantly upregulated and 1068 significantly downregulated (p < 0.05) in response to LPS. In the same HUVEC samples, 733 of the 26,106 mRNAs screened were upregulated and 536 were downregulated. Among the differentially expressed lncRNAs, AL132709.5 was the most upregulated (~70 fold) and CTC-459I6.1 the most downregulated (~28 fold). Bioinformatics analyses indicated that the differentially expressed upregulated mRNAs are primarily enriched in cytokine–cytokine receptor interaction, infectious diseases, TNF signaling pathway, FoxO signaling pathway, and pathways in cancer. This is the first lncRNA and mRNA transcriptome profile of LPS-mediated changes in human endothelial cells. These observations may reveal novel endothelial targets of LPS that may be involved in the vascular pathology of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAMs:

Cell adhesion molecules

CVDs:

Cardiovascular diseases

CXCL6:

Chemokine, CXC motif, ligand 6

DE:

Differentially expressed

EGM-2:

Endothelial cell growth medium 2

EMT:

Epithelial–mesenchymal transition

ENCODE:

Encyclopedia of DNA Elements

GO:

Gene Ontology

HOTAIR:

HOX transcript antisense intergenic RNA

HOTTIP:

HOXA transcript at the distal tip

HULC:

Highly upregulated in liver cancer

HUVECs:

Human umbilical vein endothelial cells

KEGG:

Kyoto Encyclopedia of Genes and Genomes

lncRNAs:

Long non-coding RNAs

LPS:

Lipopolysaccharide

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

mRNA:

Messenger RNA

ncRNAs:

Non-coding RNAs

NO:

Nitric oxide

PBS:

Phosphate-buffered saline

rRNA:

Ribosomal RNA

RASGRF2:

Ras protein-specific guanine nucleotide-releasing factor 2

TNF:

Tumor necrosis factor

tRNA:

Transfer RNA

References

  1. Choi KB, Wong F, Harlan JM, Chaudhary PM, Hood L, Karsan A (1998) Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem 273:20185–20188

    Article  CAS  PubMed  Google Scholar 

  2. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK 3rd, Schuchman EH, Fuks Z, Kolesnick R (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, Buchman TG, Karl IE (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251

    Article  CAS  PubMed  Google Scholar 

  4. Mayr FB, Yende S, Angus DC (2014) Epidemiology of severe sepsis. Virulence 5:4–11. doi:10.4161/viru.27372

    Article  PubMed  Google Scholar 

  5. Bone RC (1996) The sepsis syndrome. Definition and general approach to management. Clin Chest Med 17:175–181

    Article  CAS  PubMed  Google Scholar 

  6. Dunn DL, Najarian JS (1991) New approaches to the diagnosis, prevention, and treatment of cytomegalovirus infection after transplantation. Am J Surg 161:250–255

    Article  CAS  PubMed  Google Scholar 

  7. Wort SJ, Evans TW (1999) The role of the endothelium in modulating vascular control in sepsis and related conditions. Br Med Bull 55:30–48

    Article  CAS  PubMed  Google Scholar 

  8. Koide N, Abe K, Narita K, Kato Y, Sugiyama T, Jiang GZ, Yokochi T (1996) Apoptotic cell death of vascular endothelial cells and renal tubular cells in the generalized Shwartzman reaction. FEMS Immunol Med Microbiol 16:205–211

    Article  CAS  PubMed  Google Scholar 

  9. Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337. doi:10.1046/j.1523-1755.1999.00473.x

    Article  CAS  PubMed  Google Scholar 

  10. Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, Aspiotis R, Han Y, Nicholson DW, Karl IE (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1:496–501. doi:10.1038/82741

    Article  CAS  PubMed  Google Scholar 

  11. Fujita M, Kuwano K, Kunitake R, Hagimoto N, Miyazaki H, Kaneko Y, Kawasaki M, Maeyama T, Hara N (1998) Endothelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. Int Arch Allergy Immunol 117:202–208

    Article  CAS  PubMed  Google Scholar 

  12. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307. doi:10.1016/j.cell.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. doi:10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  14. Cui H, Xie N, Tan Z, Banerjee S, Thannickal VJ, Abraham E, Liu G (2014) The human long noncoding RNA lnc-IL7R regulates the inflammatory response. Eur J Immunol 44:2085–2095. doi:10.1002/eji.201344126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang S, Lu W, Ge D, Meng N, Li Y, Su L, Zhang S, Zhang Y, Zhao B, Miao J (2015) A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy 11:2172–2183. doi:10.1080/15548627.2015.1106663

    Article  CAS  PubMed  Google Scholar 

  16. Mao AP, Shen J, Zuo Z (2015) Expression and regulation of long noncoding RNAs in TLR4 signaling in mouse macrophages. BMC Genom 16:45. doi:10.1186/s12864-015-1270-5

    Article  CAS  Google Scholar 

  17. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88. doi:10.1016/j.cell.2007.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756. doi:10.1126/science.1163045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–769. doi:10.1101/gad.455708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fiedler J, Breckwoldt K, Remmele CW, Hartmann D, Dittrich M, Pfanne A, Just A, Xiao K, Kunz M, Muller T, Hansen A, Geffers R, Dandekar T, Eschenhagen T, Thum T (2015) Development of long noncoding RNA-based strategies to modulate tissue vascularization. J Am Coll Cardiol 66:2005–2015. doi:10.1016/j.jacc.2015.07.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 12:433–446. doi:10.1038/nrd4018

    Article  CAS  PubMed  Google Scholar 

  23. Munshi N, Fernandis AZ, Cherla RP, Park IW, Ganju RK (2002) Lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. J Immunol 168:5860–5866

    Article  CAS  PubMed  Google Scholar 

  24. Wuyts A, Struyf S, Gijsbers K, Schutyser E, Put W, Conings R, Lenaerts JP, Geboes K, Opdenakker G, Menten P, Proost P, Van Damme J (2003) The CXC chemokine GCP-2/CXCL6 is predominantly induced in mesenchymal cells by interleukin-1beta and is down-regulated by interferon-gamma: comparison with interleukin-8/CXCL8. Lab Invest 83:23–34

    Article  CAS  PubMed  Google Scholar 

  25. Beyrich C, Loffler J, Kobsar A, Speer CP, Kneitz S, Eigenthaler M (2011) Infection of human coronary artery endothelial cells by group B streptococcus contributes to dysregulation of apoptosis, hemostasis, and innate immune responses. Mediators Inflamm 2011:971502. doi:10.1155/2011/971502

    Article  PubMed  PubMed Central  Google Scholar 

  26. Encode Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247

    Article  Google Scholar 

  27. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigo R, Hubbard TJ (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774. doi:10.1101/gr.135350.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439. doi:10.1126/science.1231776

    Article  CAS  PubMed  Google Scholar 

  29. Roberts TC, Morris KV, Weinberg MS (2014) Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs. Epigenetics 9:13–20. doi:10.4161/epi.26700

    Article  CAS  PubMed  Google Scholar 

  30. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641. doi:10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  31. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. doi:10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  32. Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71:3–7. doi:10.1158/0008-5472.CAN-10-2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amit D, Hochberg A (2012) Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int J Clin Exp Med 5:296–305

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays 32:473–480. doi:10.1002/bies.200900170

    Article  CAS  PubMed  Google Scholar 

  35. Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T, Barkali M, Richler C, Fellig Y, Sorin V, Hubert A, Hochberg A, Czerniak A (2014) Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta 1843:1414–1426. doi:10.1016/j.bbamcr.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  36. Ma C, Nong K, Zhu H, Wang W, Huang X, Yuan Z, Ai K (2014) H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol 35:9163–9169. doi:10.1007/s13277-014-2185-5

    Article  CAS  PubMed  Google Scholar 

  37. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407. doi:10.1158/2159-8290.CD-11-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim KJ, Moon SM, Kim SA, Kang KW, Yoon JH, Ahn SG (2013) Transcriptional regulation of MDR-1 by HOXC6 in multidrug-resistant cells. Oncogene 32:3339–3349. doi:10.1038/onc.2012.354

    Article  CAS  PubMed  Google Scholar 

  39. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326. doi:10.1158/0008-5472.CAN-11-1021

    Article  CAS  PubMed  Google Scholar 

  40. Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL, Cheng FL, Zhou YF, Xiong B, Yonemura Y, Li Y (2011) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol 18:1575–1581. doi:10.1245/s10434-011-1631-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72:1126–1136. doi:10.1158/0008-5472.CAN-11-1803

    Article  CAS  PubMed  Google Scholar 

  42. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076. doi:10.1038/nature08975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng Y, Jutooru I, Chadalapaka G, Corton JC, Safe S (2015) The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 6:10840–10852. doi:10.18632/oncotarget.3450

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jiang YJ, Bikle DD (2014) LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol 144 Pt A:87–90. doi:10.1016/j.jsbmb.2013.11.018

    PubMed  Google Scholar 

  45. Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti F, Makowska Z, Boldanova T, Andersen JB, Hammerle M, Tornillo L, Heim MH, Diederichs S, Cillo C, Terracciano LM (2014) Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59:911–923. doi:10.1002/hep.26740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fernig DG, Mayer RJ (1989) Insulin processing in primary endosomes is not responsible for insulin resistance observed in parametrial adipocytes from lactating rats. Biochim Biophys Acta 1010:237–245

    Article  CAS  PubMed  Google Scholar 

  47. Liu JH, Chen G, Dang YW, Li CJ, Luo DZ (2014) Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac J Cancer Prev 15:2971–2977

    Article  PubMed  Google Scholar 

  48. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041. doi:10.1038/sj.onc.1206928

    Article  PubMed  Google Scholar 

  49. You L, Chang D, Du HZ, Zhao YP (2011) Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochem Biophys Res Commun 407:1–6. doi:10.1016/j.bbrc.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  50. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419. doi:10.1016/j.cell.2010.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peng W, Gao W, Feng J (2014) Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol 31:346. doi:10.1007/s12032-014-0346-4

    Article  PubMed  Google Scholar 

  52. Kruger S, Kunz D, Graf J, Stickel T, Merx MW, Koch KC, Janssens U, Hanrath P (2007) Endotoxin hypersensitivity in chronic heart failure. Int J Cardiol 115:159–163. doi:10.1016/j.ijcard.2006.03.003

    Article  PubMed  Google Scholar 

  53. Matsuda N, Hattori Y (2007) Vascular biology in sepsis: pathophysiological and therapeutic significance of vascular dysfunction. J Smooth Muscle Res 43:117–137

    Article  PubMed  Google Scholar 

  54. Sun Z, Lan X, Ahsan A, Xi Y, Liu S, Zhang Z, Chu P, Song Y, Piao F, Peng J, Lin Y, Han G, Tang Z (2016) Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation. Apoptosis 21:283–297. doi:10.1007/s10495-015-1210-5

    Article  CAS  PubMed  Google Scholar 

  55. Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson PA, Coats AJ (1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79:1426–1430

    Article  CAS  PubMed  Google Scholar 

  56. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842. doi:10.1016/S0140-6736(98)09286-1

    Article  CAS  PubMed  Google Scholar 

  57. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288. doi:10.1038/26239

    Article  CAS  PubMed  Google Scholar 

  58. Ding J, Magnotti LJ, Huang Q, Xu DZ, Condon MR, Deitch EA (2001) Hypoxia combined with Escherichia coli produces irreversible gut mucosal injury characterized by increased intestinal cytokine production and DNA degradation. Shock 16:189–195

    Article  CAS  PubMed  Google Scholar 

  59. Salzman AL, Wang H, Wollert PS, Vandermeer TJ, Compton CC, Denenberg AG, Fink MP (1994) Endotoxin-induced ileal mucosal hyperpermeability in pigs: role of tissue acidosis. Am J Physiol 266:G633–G646

    CAS  PubMed  Google Scholar 

  60. Zeuke S, Ulmer AJ, Kusumoto S, Katus HA, Heine H (2002) TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc Res 56:126–134

    Article  CAS  PubMed  Google Scholar 

  61. Bauersachs J, Widder JD (2008) Endothelial dysfunction in heart failure. Pharmacol Rep 60:119–126

    CAS  PubMed  Google Scholar 

  62. Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S, Ferri LE (2011) LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 71:1989–1998. doi:10.1158/0008-5472.CAN-10-2833

    Article  CAS  PubMed  Google Scholar 

  63. Franses JW, Drosu NC, Gibson WJ, Chitalia VC, Edelman ER (2013) Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. Int J Cancer 133:1334–1344. doi:10.1002/ijc.28146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giri A, Wu JM, Ward RM, Hartmann KE, Park AJ, North KE, Graff M, Wallace RB, Bareh G, Qi L, O’Sullivan MJ, Reiner AP, Edwards TL, Velez Edwards DR (2015) Genetic determinants of pelvic organ prolapse among African American and Hispanic women in the women’s health initiative. PLoS One 10:e0141647. doi:10.1371/journal.pone.0141647

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee B, Mazar J, Aftab MN, Qi F, Shelley J, Li JL, Govindarajan S, Valerio F, Rivera I, Thurn T, Tran TA, Kameh D, Patel V, Perera RJ (2014) Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn 16:615–626. doi:10.1016/j.jmoldx.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith IJ, Alamdari N, O’Neal P, Gonnella P, Aversa Z, Hasselgren PO (2010) Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid-dependent mechanism. Int J Biochem Cell Biol 42:701–711. doi:10.1016/j.biocel.2010.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reed SA, Sandesara PB, Senf SM, Judge AR (2012) Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 26:987–1000. doi:10.1096/fj.11-189977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Zhou Y, Graves DT (2014) FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014:925350. doi:10.1155/2014/925350

    PubMed  PubMed Central  Google Scholar 

  69. Chen XH, Yin YJ, Zhang JX (2011) Sepsis and immune response. World J Emerg Med 2:88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frazier WJ, Xue J, Luce WA, Liu Y (2012) MAPK signaling drives inflammation in LPS-stimulated cardiomyocytes: the route of crosstalk to G-protein-coupled receptors. PLoS ONE 7:e50071. doi:10.1371/journal.pone.0050071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC, Goldberg IJ (2013) Peroxisome proliferator-activated receptor-gamma activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 6:550–562. doi:10.1161/CIRCHEARTFAILURE.112.000177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Encode Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Program NCS, Baylor College of Medicine Human Genome Sequencing C, Washington University Genome Sequencing C, Broad I, Children’s Hospital Oakland Research I, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816. doi:10.1038/nature05874

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by in part by grants from the Canadian Institutes of Health Research and Heart and Stroke Foundation of Canada to S. Verma. S. Verma is the Canada Research Chair in Atherosclerosis at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna K. Singh or Subodh Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2016_2797_MOESM1_ESM.pdf

Supplementary Fig. 1. Quality assessment of RNAs, lncRNAs and mRNAs Data. A. Image of denaturing agarose gel (1 %) used to assess RNA integrity and genomic DNA contamination. The 28 s and 18 s rRNA bands were clear and intact. The larger rRNA (28 s) bands were more intense (almost double) in comparison to the corresponding lower rRNA (18 s) bands. The table shows the absorbance ratio for wavelengths 260 nm/280 nm and 260 nm/230 nm, concentration and the quantity of RNA used for array. B. Box-and-Whisker plots (10th, 90th percentile) showing normalized intensity for the 6 study samples to quickly visualize the distribution of our dataset. Mean intensity is denoted with a “+” sign. C1, C2 and C3 represent the control group, and L1, L2 and L3 represent the LPS (100 ng/mL)-treated group. (PDF 131 kb)

11010_2016_2797_MOESM2_ESM.pdf

Supplementary Fig. 2. Heat map and hierarchical clustering of differences in lncRNA and mRNA expression from HUVECs treated with LPS (100 ng/mL) vs. control. A, B. The dendrogram shows the relationships among the expression levels of samples. Hierarchical clustering that was performed based on ‘differentially expressed lncRNAs and mRNAs’, shows a distinguishable lncRNA and mRNA expression profiling among samples. (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.K., Matkar, P.N., Muhammad, S. et al. Investigation of novel LPS-induced differentially expressed long non-coding RNAs in endothelial cells. Mol Cell Biochem 421, 157–168 (2016). https://doi.org/10.1007/s11010-016-2797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2797-8

Keywords

Navigation