Skip to main content

Advertisement

Log in

Dihydromyricetin suppresses TNF-α-induced NF-κB activation and target gene expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nuclear factor-kappa B (NF-κB) has been reported to play a pivotal role in many physiological processes including inflammation, apoptosis, and angiogenesis. We discovered a potent natural NF-κB inhibitor, dihydromyricetin, from the traditional herb Ampelopsis grossedentata, which has a long history of use in food and medicine. In this study, we demonstrated the effect of dihydromyricetin on NF-κB activation in TNF-α-induced HeLa cells. Dihydromyricetin was found to markedly inhibit the phosphorylation and degradation of the inhibitor of NF-κB alpha (IκBα), and subsequent nuclear translocation of p65. Dihydromyricetin also has an impact on upstream signaling of IKK through the inhibition of expression of adaptor proteins, TNF receptor-associated factor 2 (TRAF2), and receptor-interacting protein 1 (RIP1). Furthermore, the current results reveal that dihydromyricetin led to the downregulation of target genes involved in inflammation, proliferation, as well as potentiation of TNF-α-induced apoptosis through suppressing the activation of NF-κB. In conclusion, our data indicate that dihydromyricetin may be a potentially useful therapeutic agent for inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NF-κB:

Nuclear factor-κB

IκBα:

Inhibitor of NF-κB alpha

IKK:

IκB kinase

TRAF2:

TNF receptor-associated factor 2

RIP1:

Receptor-interacting protein 1

Topo-I:

Topoisomerase-I

TNF-α:

Tumor necrosis factor alpha

MMP-9:

Matrix metalloproteinase-9

iNOS:

Inducible nitric oxide synthase

c-IAP2:

Cellular inhibitor of apoptosis-2

Bcl-2:

B-cell lymphoma 2

COX-2:

Cyclooxygenase-2

ICAM-1:

Inter-cellular adhesion molecule-1

VEGF:

Vascular endothelial growth factor

References

  1. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    Article  CAS  PubMed  Google Scholar 

  2. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362. doi:10.1016/j.cell.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  3. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86. doi:10.1186/1476-4598-12-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl) 82:434–448. doi:10.1007/s00109-004-0555-y

    Article  CAS  Google Scholar 

  5. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310. doi:10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  6. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309. doi:10.1038/nrc1588

    Article  CAS  PubMed  Google Scholar 

  7. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756. doi:10.1038/nri1184

    Article  CAS  PubMed  Google Scholar 

  8. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504

    Article  CAS  PubMed  Google Scholar 

  9. Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    Article  CAS  PubMed  Google Scholar 

  10. Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schutze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428. doi:10.1016/j.immuni.2004.08.017

    Article  CAS  PubMed  Google Scholar 

  11. Chen T, Zhu S, Lu Y, Cao H, Zhao Y, Jiang G, Zhu L, Lu T (2012) Probing the interaction of anti-cancer agent dihydromyricetin with human serum albumin: a typical method study. Anticancer Agents Med Chem 12:919–928

    Article  CAS  PubMed  Google Scholar 

  12. Wu S, Liu B, Zhang Q, Liu J, Zhou W, Wang C, Li M, Bao S, Zhu R (2013) Dihydromyricetin reduced Bcl-2 expression via p53 in human hepatoma HepG2 cells. PLoS One 8:e76886. doi:10.1371/journal.pone.0076886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hwangbo C, Kim J, Lee JJ, Lee JH (2010) Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase calpha and the PDZ adapter protein mda-9/Syntenin. Cancer Res 70:1645–1655. doi:10.1158/0008-5472.CAN-09-2447

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Lenardo MJ (2000) Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 113(Pt 5):753–757

    CAS  PubMed  Google Scholar 

  15. Baeuerle PA, Lenardo M, Pierce JW, Baltimore D (1988) Phorbol-ester-induced activation of the NF-kappa B transcription factor involves dissociation of an apparently cytoplasmic NF-kappa B/inhibitor complex. Cold Spring Harb Symp Quant Biol 53(Pt 2):789–798

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh S, Baltimore D (1990) Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature 344:678–682. doi:10.1038/344678a0

    Article  CAS  PubMed  Google Scholar 

  17. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 9:2723–2735

    Article  CAS  PubMed  Google Scholar 

  18. Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52. doi:10.1016/j.tibs.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  19. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387–396

    Article  CAS  PubMed  Google Scholar 

  20. Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523

    Article  CAS  PubMed  Google Scholar 

  21. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    Article  CAS  PubMed  Google Scholar 

  22. Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunol Rev 246:95–106. doi:10.1111/j.1600-065X.2012.01108.x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burkle A, Brabeck C, Diefenbach J, Beneke S (2005) The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol 37:1043–1053. doi:10.1016/j.biocel.2004.10.006

    Article  PubMed  Google Scholar 

  24. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103:18314–18319. doi:10.1073/pnas.0606528103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759. doi:10.1038/nri1703

    Article  CAS  PubMed  Google Scholar 

  26. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635. doi:10.1126/science.1071924

    Article  CAS  PubMed  Google Scholar 

  27. Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH (2013) Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 25:403–416. doi:10.1016/j.cellsig.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  28. Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, Shyur LF (2005) Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol 146:352–363. doi:10.1038/sj.bjp.0706343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China, No. 81360496. This study also received assistance from Jilin Province Science and Technology Development Plan item (20150101229JC) and Project of Education Department of Jilin Province 2016 (281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Jin.

Ethics declarations

Conflicts interest

The authors declare that there are no financial conflicts of interest in regard to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, N., Ma, J., Wang, K.S. et al. Dihydromyricetin suppresses TNF-α-induced NF-κB activation and target gene expression. Mol Cell Biochem 422, 11–20 (2016). https://doi.org/10.1007/s11010-016-2799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2799-6

Keywords

Navigation