Skip to main content
Log in

MicroRNA-101 inhibits angiogenesis via COX-2 in endometrial carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Abnormal angiogenesis is critically involved in tumor progression and metastasis including endometrial cancer and is regulated by microRNAs such as microRNA-101 (miR-101). We hypothesize that miR-101 expression is disrupted in endometrial cancer and modulation of miR-101 levels is sufficient to regulate tumor growth through angiogenesis. We examined the expression levels of miR-101 and factors involved in angiogenesis in the patients with endometrial cancer. We also overexpressed or inhibited miR-101 in RL-95-2 cells and examined their effects on cell toxicity and tumor growth. Finally, we determined if miR-101 regulated tumorigenesis through cyclooxygenase-2 (COX-2). We found that miR-101 levels were significantly reduced. Factors involved in angiogenesis included vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and aromatase (P450arom), which were increased in endometrial carcinoma. Modulation of miR-101 level was sufficient to affect tumor growth. Finally, we found that the effects of miR-101 inhibition on tumor growth were suppressed by COX-2 inhibition. Our results suggest that modulating miR-101 and COX-2 levels or their activity may be a potential therapeutic strategy for endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weiderpass E, Labreche F (2012) Malignant tumors of the female reproductive system. Saf Health Work 3:166–180. https://doi.org/10.5491/SHAW.2012.3.3.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB, Wolk A, Wentzensen N, Weiss NS, Webb PM, van den Brandt PA, van de Vijver K, Thompson PJ, Australian National Endometrial Cancer Study Group, Strom BL, Spurdle AB, Soslow RA, Shu XO, Schairer C, Sacerdote C, Rohan TE, Robien K, Risch HA, Ricceri F, Rebbeck TR, Rastogi R, Prescott J, Polidoro S, Park Y, Olson SH, Moysich KB, Miller AB, McCullough ML, Matsuno RK, Magliocco AM, Lurie G, Lu L, Lissowska J, Liang X, Lacey JV Jr, Kolonel LN, Henderson BE, Hankinson SE, Hakansson N, Goodman MT, Gaudet MM, Garcia-Closas M, Friedenreich CM, Freudenheim JL, Doherty J, De Vivo I, Courneya KS, Cook LS, Chen C, Cerhan JR, Cai H, Brinton LA, Bernstein L, Anderson KE, Anton-Culver H, Schouten LJ, Horn-Ross PL (2013) Type I and II endometrial cancers: have they different risk factors? J Clin Oncol 31:2607–2618. https://doi.org/10.1200/JCO.2012.48.2596

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15:10–17

    Article  CAS  Google Scholar 

  4. Stefansson IM, Salvesen HB, Akslen LA (2006) Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res 66:3303–3309. https://doi.org/10.1158/0008-5472.CAN-05-1163

    Article  CAS  PubMed  Google Scholar 

  5. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887

    Article  CAS  Google Scholar 

  6. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18. https://doi.org/10.1053/sonc.2002.37263

    Article  CAS  PubMed  Google Scholar 

  7. Ramon LA, Braza-Boils A, Gilabert J, Chirivella M, Espana F, Estelles A, Gilabert-Estelles J (2012) microRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer. Hum Reprod 27:3036–3045. https://doi.org/10.1093/humrep/des292

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Ma X, Ma L, Wang C, He Y, Yu Z (2013) Effects of ectopic HER-2/neu gene expression on the COX-2/PGE2/P450arom signaling pathway in endometrial carcinoma cells: HER-2/neu gene expression in endometrial carcinoma cells. J Exp Clin Cancer Res 32:11. https://doi.org/10.1186/1756-9966-32-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13. https://doi.org/10.1038/ng1798

    Article  CAS  PubMed  Google Scholar 

  10. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. https://doi.org/10.1038/nrm2868

    Article  CAS  PubMed  Google Scholar 

  11. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. https://doi.org/10.1038/nrg2843

    Article  CAS  PubMed  Google Scholar 

  12. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  13. Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6:239ps233. https://doi.org/10.1126/scitranslmed.3009008

    Article  CAS  Google Scholar 

  14. Hesse M, Arenz C (2014) MicroRNA maturation and human disease. Methods Mol Biol 1095:11–25. https://doi.org/10.1007/978-1-62703-703-7_2

    Article  CAS  PubMed  Google Scholar 

  15. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. https://doi.org/10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  16. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714. https://doi.org/10.1038/nrg2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. https://doi.org/10.1158/0008-5472.CAN-05-1783

    Article  CAS  PubMed  Google Scholar 

  18. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. https://doi.org/10.1073/pnas.0510565103

    Article  CAS  PubMed  Google Scholar 

  19. Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJ, Kudo M, Sakuragi N (2014) MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5:6049–6062. https://doi.org/10.18632/oncotarget.2157

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30:822–831. https://doi.org/10.1038/onc.2010.463

    Article  CAS  PubMed  Google Scholar 

  21. Li Q, Wang G, Shan JL, Yang ZX, Wang HZ, Feng J, Zhen JJ, Chen C, Zhang ZM, Xu W, Luo XZ, Wang D (2010) MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. J Gastroenterol Hepatol 25:164–171. https://doi.org/10.1111/j.1440-1746.2009.05971.x

    Article  CAS  PubMed  Google Scholar 

  22. Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, Lu PJ (2009) MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28:3360–3370. https://doi.org/10.1038/onc.2009.192

    Article  CAS  PubMed  Google Scholar 

  23. Chen S, Wang H, Ng WL, Curran WJ, Wang Y (2011) Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int J Radiat Oncol Biol Phys 81:1524–1529. https://doi.org/10.1016/j.ijrobp.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  24. Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, He Z, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST (2015) Cyclooxygenase-2, a potential therapeutic target, is regulated by miR-101 in esophageal squamous cell carcinoma. PLoS ONE 10:e0140642. https://doi.org/10.1371/journal.pone.0140642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daikoku T, Hirota Y, Tranguch S, Joshi AR, DeMayo FJ, Lydon JP, Ellenson LH, Dey SK (2008) Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res 68:5619–5627. https://doi.org/10.1158/0008-5472.CAN-08-1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Xu RJ, Jiang LH, Shi J, Long X, Fan B (2005) Expression of cyclooxygenase-2 and inducible nitric oxide synthase correlates with tumor angiogenesis in endometrial carcinoma. Med Oncol 22:63–70. https://doi.org/10.1385/MO:22:1:063

    Article  PubMed  Google Scholar 

  27. Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM, Noske DP, Tannous BA, Wurdinger T (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1:710–720. https://doi.org/10.18632/oncotarget.205

    Article  PubMed  Google Scholar 

  28. Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L, Fiorentino M, Poggioli G, Rizzello F, Campieri M, Spisni E (2013) Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol 229:379–389. https://doi.org/10.1002/path.4097

    Article  CAS  PubMed  Google Scholar 

  29. Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, Spisni E, Pantaleo MA, Biasco G, Tomasi V (2009) MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 315:1439–1447. https://doi.org/10.1016/j.yexcr.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  30. He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH, Xu HC, Xu X, Tang D, Zheng XF, Xue YP, Huang GC, Sun WH (2012) Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 279:4201–4212. https://doi.org/10.1111/febs.12013

    Article  CAS  PubMed  Google Scholar 

  31. Way DL, Grosso DS, Davis JR, Surwit EA, Christian CD (1983) Characterization of a new human endometrial carcinoma (RL95-2) established in tissue culture. In Vitro 19:147–158

    Article  CAS  Google Scholar 

  32. Kaku T, Kamura T, Kinukawa N, Kobayashi H, Sakai K, Tsuruchi N, Saito T, Kawauchi S, Tsuneyoshi M, Nakano H (1997) Angiogenesis in endometrial carcinoma. Cancer 80:741–747

    Article  CAS  Google Scholar 

  33. Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, Cloos J, Breakefield XO, Krichevsky AM, Noske DP, Tannous BA, Wurdinger T (2011) Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS ONE 6:e16282. https://doi.org/10.1371/journal.pone.0016282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, H., Zhao, C. et al. MicroRNA-101 inhibits angiogenesis via COX-2 in endometrial carcinoma. Mol Cell Biochem 448, 61–69 (2018). https://doi.org/10.1007/s11010-018-3313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3313-0

Keywords

Navigation