Skip to main content

Advertisement

Log in

Induction of HRR genes and inhibition of DNMT1 is associated with anthracycline anti-tumor antibiotic-tolerant breast carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the study was to understand the role of homologous recombination repair (HRR) pathway genes in development of chemotolerance in breast cancer (BC). For this purpose, chemotolerant BC cells were developed in MCF-7 and MDA MB 231 cell lines after treatment with two anthracycline anti-tumor antibiotics doxorubicin and nogalamycin at different concentrations for 48 h with differential cell viability. The drugs were more effective in MCF-7 (IC50: 0.214–0.242 µM) than in MDA MB 231 (IC50: 0.346–0.37 µM) as shown by cell viability assay. The drugs could reduce the protein expression of PCNA in the cell lines. Increased mRNA/protein expression of the HRR (BRCA1, BRCA2, FANCC, FANCD2, and BRIT1) genes was seen in the cell lines in the presence of the drugs at different concentrations (lower IC50, IC50, and higher IC50) irrespective of the cell viability (68–41%). Quantitative methylation assay showed an increased percentage of hypomethylation of the promoters of these genes after drug treatment in the cell lines. Similarly, chemotolerant neoadjuvant chemotherapy (NACT) treated primary BC samples showed significantly higher frequency of hypomethylation of the genes than the pretherapeutic BC samples. The drugs in different concentrations could reduce m-RNA and protein expression of DNMT1 (DNA methyltransferase 1) in the cell lines. Similar phenomenon was also evident in the NACT samples than in the pretherapeutic BC samples. Thus, our data indicate that reduced DNMT1 expression along with promoter hypomethylation and increased expression of the HRR genes might have importance in chemotolerance in BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BC:

Breast carcinoma

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor receptor 2

NACT:

Neoadjuvant chemotherapy

HRR:

Homologous recombination repair

UICC:

International Union Against Cancer

TNM:

Tumor size, lymph node, metastasis

MSRA:

Methylation-sensitive restriction analysis

qRT-PCR:

Real-time PCR quantification

DNMT1:

DNA methyltransferase 1

PCNA:

Proliferating cell nuclear antigen

HRP:

Horse-radish-peroxidase

FITC:

Fluorescein isothiocyanate

References

  1. Ochayon L, Tunin R, Yoselis A, Kadmon I (2014) Symptoms of hormonal therapy and social support: is there a connection? Comparison of symptom severity, symptom interference and social support among breast cancer patients receiving and not receiving adjuvant hormonal treatment. Eur J Oncol Nurs 14:192–196

    Google Scholar 

  2. Sinha S, Chunder N, Mukherjee N, Alam N, Roy A, Roychoudhury S, Panda CK (2008) Frequent deletion and methylation in SH3GL2 and CDKN2A loci are associated with early- and late-onset breast carcinoma. Ann Surg Oncol 15:1070–1080

    Article  PubMed  Google Scholar 

  3. Gampenrieder SP, Rinnerthaler G, Greil R (2013) Neoadjuvant chemotherapy and targeted therapy in breast cancer: past, present, and future. J Oncol 2013:732047

  4. Asakawa H, Koizumi H, Koike A, Takahashi M, Wu W, Iwase H, Fukuda M, Ohta T (2010) Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 12:R17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kriege M, Seynaeve C, Meijers-Heijboer H, Collee JM, Menke-Pluymers MB, Bartels CC, Tilanus-Linthorst MM, Blom J, Huijskens E, Jager A, van den Ouweland A, van Geel B, Hooning MJ, Brekelmans CT, Klijn JG (2009) Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27:3764–3771

    Article  PubMed  Google Scholar 

  6. Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24:3799–3808

    Article  CAS  PubMed  Google Scholar 

  7. Mulligan JM, Hill LA, Deharo S, Irwin G, Boyle D, Keating KE, Raji OY, McDyer FA, O’Brien E, Bylesjo M, Quinn JE, Lindor NM, Mullan PB, James CR, Walker SM, Kerr P, James J, Davison TS, Proutski V, Salto-Tellez M, Johnston PG, Couch FJ, Paul Harkin D (2014) Identification and validation of an anthracycline/cyclophosphamide-based chemotherapy response assay in breast cancer. J Natl Cancer Inst 106:djt335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rassool FV, Tomkinson AE (2010) Targeting abnormal DNA double strand break repair in cancer. Cell Mol Life Sci 67:3699–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharya N, Mukherjee N, Singh RK, Sinha S, Alam N, Roy A, Roychoudhury S, Panda CK (2013) Frequent alterations of MCPH1 and ATM are associated with primary breast carcinoma: clinical and prognostic implications. Ann Surg Oncol 3:S424–S432

    Article  Google Scholar 

  10. Rai R, Dai H, Multani AS, Li K, Chin K, Gray J, Lahad JP, Liang J, Mills GB, Meric-Bernstam F, Lin SY (2006) BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chunder N, Mandal S, Roy A, Roychoudhury S, Panda CK (2004) Differential association of BRCA1 and BRCA2 genes with some breast cancer-associated genes in early and late onset breast tumors. Ann Surg Oncol 11:1045–1055

    Article  PubMed  Google Scholar 

  12. Dasgupta H, Mukherjee N, Islam S, Bhattacharya R, Alam N, Roy A, Roychoudhury S, Biswas J, Panda CK (2017) Frequent alterations of HRR pathway in primary and chemotolerant breast carcinomas: clinical importance. Future Oncol 13:159–174

    Article  CAS  PubMed  Google Scholar 

  13. Sinha S, Singh RK, Alam N, Roy A, Roychoudhury S, Panda CK (2008) Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer 7:84

    Article  PubMed  PubMed Central  Google Scholar 

  14. van der Groep P, Hoelzel M, Buerger H, Joenje H, de Winter JP, van Diest PJ (2008) Loss of expression of FANCD2 protein in sporadic and hereditary breast cancer. Breast Cancer Res Treat 107:41–47

    Article  CAS  PubMed  Google Scholar 

  15. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glasspool RM, Teodoridis JM, Brown R (2006) Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer 94:1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trudeau M, Charbonneau F, Gelmon K, Laing K, Latreille J, Mackey J, McLeod D, Pritchard K, Provencher L, Verma S (2005) Selection of adjuvant chemotherapy for treatment of node-positive breast cancer. Lancet Oncol 6:886–898

    Article  CAS  PubMed  Google Scholar 

  18. Siitonen V, Selvaraj B, Niiranen L, Lindqvist Y, Schneider G, Metsä-Ketelä M (2016) Divergent non-heme iron enzymes in the nogalamycin biosynthetic pathway. Proc Natl Acad Sci 113:5251–5256

    Article  CAS  PubMed  Google Scholar 

  19. Andres JL, Fan S, Turkel GJ, Wang JA, Twu NF, Yuan RQ, Lamszus K, Goldberg ID, Rosen EM (1998) Regulation of BRCA1 and BRCA2 expression in human breast cancer cells by DNA-damaging agents. Oncogene 16:2229–2241

    Article  CAS  PubMed  Google Scholar 

  20. Chen JS, Konopleva M, Andreeff M, Multani AS, Pathak S, Mehta K (2004) Drug-resistant breast carcinoma (MCF-7) cells are paradoxically sensitive to apoptosis. J Cell Physio 200:223–234

    Article  CAS  Google Scholar 

  21. Sur S, Pal D, Banerjee K, Mandal S, Das A, Roy A, Panda CK (2015) Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model. Mol Carcinog 55:1138–1149

    Article  CAS  PubMed  Google Scholar 

  22. Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PC (1998) Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19:419–424

    Article  CAS  PubMed  Google Scholar 

  23. Veroni C, Marnetto F, Granieri L, Bertolotto A, Ballerini C, Repice AM, Schirru L, Coghe G, Cocco E, Anastasiadou E, Puopolo M, Aloisi F (2015) Immune and Epstein-Barr virus gene expression in cerebrospinal fluid and peripheral blood mononuclear cells from patients with relapsing-remitting multiple sclerosis. J Neuroinflammation 14:12:132

    Google Scholar 

  24. Di Napoli A, Al-Jadiri MF, Talerico C, Duranti E, Pilozzi E, Trivedi P, Anastasiadou E, Alsaadawi AR, Al-Darraji AF, Al-Hadad SA, Testi AM, Uccini S, Ruco L (2013) Epstein-Barr virus (EBV) positive classical Hodgkin lymphoma of Iraqi children: an immunophenotypic and molecular characterization of Hodgkin/Reed-Sternberg cells. Pediatr Blood Cancer 60:2068–2072

    Article  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  26. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  27. Dasgupta S, Mukherjee N, Roy S, Roy A, Sengupta A, Roychowdhury S, Panda CK (2002) Mapping of the candidate tumor suppressor genes’ loci on human chromosome 3 in head and neck squamous cell carcinoma of an Indian patient population. Oral Oncol 38:6–15

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  29. Loginov VI, Maliukova AV, SereginIu A, Khodyrev DS, Kazubskaia TP, Ermilova VD, Gar’kavtseva RF, Kiselev LL, Zabarovskii ER, Braga EA (2004) Methylation of the promoter region of the RASSF1A gene, a candidate tumor suppressor, in primary epithelial tumors. MolBiol (Mosk) 38:654–667

    CAS  Google Scholar 

  30. Ivanova T, Petrenko A, Gritsko T, Vinokourova S, Eshilev E, Kobzeva V, Kisseljov F, Kisseljova N (2002) Methylation and silencing of the retinoic acid receptor-beta 2 gene in cervical cancer. BMC Cancer 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomassin H, Kress C, Grange T (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 32:e168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perrone F, Suardi S, Pastore E, Casieri P, Orsenigo M, Caramuta S, Dagrada G, Losa M, Licitra L, Bossi P, Staurengo S, Oggionni M, Locati L, Cantu G, Squadrelli M, Carbone A, Pierotti MA, Pilotti S (2006) Molecular and cytogenetic subgroups of oropharyngeal squamous cell carcinoma. Clin Cancer Res 12:6643–6651

    Article  CAS  PubMed  Google Scholar 

  33. Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, Dyck B, Parisi PJ, Mer JE, Smith G, Dyck DI PJ (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43:595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perou CM (2010) Molecular stratification of triple-negative breast cancers. Oncologist 16:61–70

    Article  Google Scholar 

  35. Alfaro Y, Delgado G, Carabez A, Anguiano B, Aceves C (2013) Iodine and doxorubicin, a good combination for mammary cancer treatment: antineoplastic adjuvancy, chemoresistance inhibition, and cardioprotection. Mol Cancer 12:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vissac-Sabatier C, Bignon YJ, Bernard-Gallon DJ (2003) Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr Cancer 45:247–255

    Article  CAS  PubMed  Google Scholar 

  37. Chai KM, Wang CY, Liaw HJ, Fang KM, Yang CS, Tzeng SF (2014) Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide. Oncotarget 5:10901–10915

    PubMed  PubMed Central  Google Scholar 

  38. Liedtke S, Biebernick S, Radke TF, Stapelkamp D, Coenen C, Zaehres H, Fritz G, Kogler G (2015) DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Transl Med 4:576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ray R, Chakraborty BK, Ray K, Mukherji S, Chowdhury JR, Panda CK (1996) Effect of anthracycline antitumor antibiotics (adriamycin and nogalamycin) and cycloheximide on the biosynthesis and processing of major UsnRNAs. Mol Cell Biochem 162l:75–82

    Google Scholar 

  40. Bosviel R, Durif J, Déchelotte P, Bignon YJ, Bernard-Gallon D (2012) Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines. Br J Nutr 108:1187–1193

    Article  CAS  PubMed  Google Scholar 

  41. Takabatake M, Blyth BJ, Daino K, Imaoka T, Nishimura M, Fukushi M, Shimada Y (2016) DNA methylation patterns in rat mammary carcinomas induced by pre-and post-pubertal irradiation. PLoS ONE 11:e0164194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ignatov T, Poehlmann A, Ignatov A, Schinlauer A, Costa SD, Roessner A, Kalinski T, Bischoff J (2013) BRCA1 promoter methylation is a marker of better response to anthracycline-based therapy in sporadic TNBC. Breast Cancer Res Treat 141:205–212

    Article  CAS  PubMed  Google Scholar 

  43. Yokochi T, Robertson KD (2004) Doxorubicin inhibits DNMT1, resulting in conditional apoptosis. Mol Pharmacol 66:1415–1420

    Article  CAS  PubMed  Google Scholar 

  44. Tesei A, Brigliadori G, Carloni S, Fabbri F, Ulivi P, Arienti C, Sparatore A, Del Soldato P, Pasini A, Amadori D, Silvestrini R, Zoli W (2012) Organosulfur derivatives of the HDAC inhibitor valproic acid sensitize human lung cancer cell lines to apoptosis and to cisplatin cytotoxicity. J Cell Physiol 227:3389–3396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the director of Chittaranjan National Cancer Institute, Kolkata, India. We are also thankful to the Upjohn Company, USA for gifting nogalamycin. Financial support for this work was provided by UGC-NET Fellowship Grant F.2-3/2000 (SA-I) (Sr. No. 2061030813, Ref. No.: 20-06/2010(i)EU-IV dated 22.10.2010) to H. Dasgupta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmay Kumar Panda.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Informed consent

Informed consent from the patients and approval from the Research Ethics Committee of the institute were obtained for sample collection.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2018_3442_MOESM1_ESM.tif

Supplementary Figure S1: (a, b) Post real-time representative agarose gel images of m-RNA expression patterns of HRR genes. (a) Untreated and nogalamycin-treated MCF-7 cDNA, 1. untreated/control, 2. 0.1µM NG treated, 3. 0.242µM (IC50) NG treated, 4. 0.4µM NG treated: (b) Untreated and doxorubicin-treated MDA MB 231 cDNA, 1. untreated/control, 2. 0.2µM DX treated, 3. 0.346µM (IC50) DX treated, 4. 0.6µM DX treated. NG = Nogalamycin, DX = Doxorubicin. (TIF 883 KB)

11010_2018_3442_MOESM2_ESM.tif

Supplementary Figure S2: (a, b) Representative promoter methylation patterns of HRR genes after treatment with doxorubicin and nogalamycin in MCF-7 cells. (a) K1: (b) K2 (c) BRCA2: (d) FANCC (e) FANCD2. Lane-wise description of DNA: 1. Undigested, control, 2. HpaII digested, control, 3. HhaI digested, control, 4. Undigested, 0.1µM DX treated, 5. HpaII digested, 0.1µM DX treated, 6. HhaI digested, 0.1µM DX treated, 7. Undigested, 0.214µM (IC50) DX treated, 8. HpaII digested, 0.214µM (IC50) DX treated, 9. HhaI digested, 0.214µM (IC50) DX treated, 10. Undigested, 0.4µM DX treated, 11. HpaII digested, 0.4µM DX treated, 12. HhaI digested, 0.4µM DX treated, 13. Undigested, control, 14. HpaII digested, control, 15. HhaI digested, control, 16. Undigested, 0.1µM NG treated, 17. HpaII digested, 0.1µM NG treated, 18. HhaI digested, 0.1µM NG treated, 19. Undigested, 0.242µM (IC50) NG treated, 20. HpaII digested, 0.242µM (IC50) NG treated, 21. HhaI digested, 0.242µM (IC50) NG treated, 22. Undigested, 0.4µM NG treated, 23. HpaII digested, 0.4µM NG treated, 24. HhaI digested, 0.4µM NG treated. DX=Doxorubicin, NG=Nogalamycin. (TIF 1970 KB)

11010_2018_3442_MOESM3_ESM.tif

Supplementary Figure S3: Post real-time representative agarose gel images of m-RNA expression patterns of DNMT1 cDNA in BC cell lines after doxorubicin/nogalamycin treatment. Lane-wise description of the samples: 1. untreated/control, 2. lower IC50 treated, 3. IC50 treated, 4. higher IC50 treated. (TIF 809 KB)

11010_2018_3442_MOESM4_ESM.tif

Supplementary Table S1: (a) Primers for m-RNA expression analysis of HRR genes (b) Clinicopathological features of pretherapeutic and NACT-treated BC patients. (c) Primers for promoter methylation analysis of HRR genes. (TIF 2391 KB)

11010_2018_3442_MOESM5_ESM.tif

Supplementary Table S2: Concordance of Qualitative methylation status of HRR genes previously determined in pretherapeutic and NACT-treated samples (Dasgupta et al. 2017) with the quantitative methylation status (dCT). + = Methylation positive, − = Methylation negative, ND = Not determined. (TIF 1893 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, H., Islam, M.S., Alam, N. et al. Induction of HRR genes and inhibition of DNMT1 is associated with anthracycline anti-tumor antibiotic-tolerant breast carcinoma cells. Mol Cell Biochem 453, 163–178 (2019). https://doi.org/10.1007/s11010-018-3442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3442-5

Keywords

Navigation