Skip to main content

Advertisement

Log in

Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Regenerative functions of exosomes rely on their contents which are influenced by pathological stimuli, including hypoxia, in rotator cuff tendon injuries (RCTI). The hypoxic environment triggers tenocytes and adjacent adipose-derived mesenchymal stem cells (ADMSCs) to release regenerative mediators to the ECM via the exosomes which elicit autocrine/paracrine responses to protect the tendon matrix from injury. We investigated the exosomal protein contents from tenocytes and subcutaneous ADMSCs from the shoulder of Yucatan microswine cultured under hypoxic conditions (2% O2). The exosomal proteins were detected using high-resolution mass spectrometry nano-LC–MS/MS Tribrid system and were compiled using ‘Scaffold’ software. Hypoxic exosomes from tenocytes and ADMSCs carried 199 and 65 proteins, respectively. The key proteins identified by mass spectrometry and associated with ECM homeostasis from hypoxic ADMSCs included MMP2, COL6A, CTSD and TN-C and those from hypoxic tenocytes were THSB1, NSEP1, ITIH4 and TN-C. These findings were confirmed at the mRNA and protein level in the hypoxic ADMSCs and tenocytes. These proteins are involved in multiple signaling pathways of ECM repair/regeneration. This warrants further investigations for their translational significance in the management of RCTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anversa P (2003) Primitive cells and tissue regeneration. Circ Res 92:579–582. https://doi.org/10.1161/01.RES.0000066879.66293.87

    Article  PubMed  CAS  Google Scholar 

  2. Aminzadeh MA, Rogers RG, Fournier M et al (2018) Exosome-mediated benefits of cell therapy in mouse and human models of duchenne muscular dystrophy. Stem Cell Rep 10:942–955. https://doi.org/10.1016/j.stemcr.2018.01.023

    Article  CAS  Google Scholar 

  3. Murphy C, Withrow J, Hunter M et al (2018) Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Asp Med 60:123–128. https://doi.org/10.1016/j.mam.2017.09.006

    Article  CAS  Google Scholar 

  4. Burke J, Kolhe R, Hunter M et al (2016) Stem cell-derived exosomes: a potential alternative therapeutic agent in orthopaedics. Stem Cells Int 2016:1–6. https://doi.org/10.1155/2016/5802529

    Article  CAS  Google Scholar 

  5. Conlan RS, Pisano S, Oliveira MI et al (2017) Exosomes as reconfigurable therapeutic systems. Trends Mol Med 23:636–650. https://doi.org/10.1016/j.molmed.2017.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Imam MA, Holton J, Horriat S et al (2017) A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology. SICOT-J 3:58. https://doi.org/10.1051/sicotj/2017039

    Article  PubMed  PubMed Central  Google Scholar 

  7. Raney EB, Thankam FG, Dilisio MF, Agrawal DK (2017) Pain and the pathogenesis of biceps tendinopathy. Am J Transl Res 9:2668–2683

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Thankam FG, Roesch ZK, Dilisio MF et al (2018) Association of inflammatory responses and ECM disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the injured rotator cuff tendon. Sci Rep. https://doi.org/10.1038/s41598-018-27250-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thankam FG, Boosani CS, Dilisio MF et al (2016) MicroRNAs associated with shoulder tendon matrisome disorganization in glenohumeral arthritis. PLoS ONE 11:e0168077. https://doi.org/10.1371/journal.pone.0168077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thankam FG, Boosani CS, Dilisio MF, Agrawal DK (2017) MicroRNAs associated with inflammation in shoulder tendinopathy and glenohumeral arthritis. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-3097-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fouda MB, Thankam FG, Dilisio MF, Agrawal DK (2017) Alterations in tendon microenvironment in response to mechanical load: potential molecular targets for treatment strategies. Am J Transl Res 9:4341–4360

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Thankam FG, Dilisio MF, Agrawal DK (2016) Immunobiological factors aggravating the fatty infiltration on tendons and muscles in rotator cuff lesions. Mol Cell Biochem. https://doi.org/10.1007/s11010-016-2710-5

    Article  PubMed  Google Scholar 

  13. Thankam FG, Dilisio MF, Dietz NE, Agrawal DK (2016) TREM-1, HMGB1 and RAGE in the shoulder tendon: dual mechanisms for inflammation based on the coincidence of glenohumeral arthritis. PLoS ONE 11:e0165492. https://doi.org/10.1371/journal.pone.0165492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bi Y, Ehirchiou D, Kilts TM et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227. https://doi.org/10.1038/nm1630

    Article  PubMed  CAS  Google Scholar 

  15. Mora MV (2015) Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells 7:691. https://doi.org/10.4252/wjsc.v7.i4.691

    Article  PubMed Central  Google Scholar 

  16. Peach MS, Ramos DM, James R et al (2017) Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS ONE 12:e0174789. https://doi.org/10.1371/journal.pone.0174789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Liu L, Hindieh J, Leong DJ, Sun HB (2017) Advances of stem cell based-therapeutic approaches for tendon repair. J Orthop Transl 9:69–75. https://doi.org/10.1016/j.jot.2017.03.007

    Article  CAS  Google Scholar 

  18. Pas HIMFL, Moen MH, Haisma HJ, Winters M (2017) No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br J Sports Med 51:996–1002. https://doi.org/10.1136/bjsports-2016-096794

    Article  PubMed  Google Scholar 

  19. Thankam FG, Muthu J (2015) Alginate–polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering. J Colloid Interface Sci 457:52–61. https://doi.org/10.1016/j.jcis.2015.06.034

    Article  PubMed  CAS  Google Scholar 

  20. Millar NL, Reilly JH, Kerr SC et al (2012) Hypoxia: a critical regulator of early human tendinopathy. Ann Rheum Dis 71:302–310. https://doi.org/10.1136/ard.2011.154229

    Article  PubMed  CAS  Google Scholar 

  21. Liang M, Cornell HR, Zargar Baboldashti N et al (2012) Regulation of hypoxia-induced cell death in human tenocytes. Adv Orthop 2012:1–12. https://doi.org/10.1155/2012/984950

    Article  Google Scholar 

  22. Huang T-F, Yew T-L, Chiang E-R et al (2013) Mesenchymal stem cells from a hypoxic culture improve and engraft achilles tendon repair. Am J Sports Med 41:1117–1125. https://doi.org/10.1177/0363546513480786

    Article  PubMed  Google Scholar 

  23. Zhang J, Wang JH-C (2013) Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS ONE 8:e61424. https://doi.org/10.1371/journal.pone.0061424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xin T, Greco V, Myung P (2016) Hardwiring stem cell communication through tissue structure. Cell 164:1212–1225. https://doi.org/10.1016/j.cell.2016.02.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang G, Yang P (2018) A novel cell–cell communication mechanism in the nervous system: exosomes. J Neurosci Res 96:45–52. https://doi.org/10.1002/jnr.24113

    Article  PubMed  CAS  Google Scholar 

  26. Meyer J, Salamon A, Herzmann N et al (2015) Isolation and differentiation potential of human mesenchymal stem cells from adipose tissue harvested by water jet-assisted liposuction. Aesthet Surg J 35:1030–1039. https://doi.org/10.1093/asj/sjv075

    Article  PubMed  Google Scholar 

  27. Wu Y, Deng W, Klinke DJ II (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140:6631–6642. https://doi.org/10.1039/C5AN00688K

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Thankam FG, Chandra IS, Kovilam AN et al (2018) Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury. Sci Rep. https://doi.org/10.1038/s41598-018-35391-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thankam FG, Boosani CS, Dilisio MF et al (2018) Genes interconnecting AMPK and TREM-1 and associated microRNAs in rotator cuff tendon injury. Mol Cell Biochem. https://doi.org/10.1007/s11010-018-3456-z

    Article  PubMed  Google Scholar 

  30. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  Google Scholar 

  31. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  32. Alvarez-Tejado M, Naranjo-Suárez S, Jiménez C et al (2001) Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J Biol Chem 276:22368–22374. https://doi.org/10.1074/jbc.M011688200

    Article  PubMed  CAS  Google Scholar 

  33. Kumar H, Choi D-K (2015) Hypoxia inducible factor pathway and physiological adaptation: a cell survival pathway? Mediat Inflamm 2015:1–11. https://doi.org/10.1155/2015/584758

    Article  CAS  Google Scholar 

  34. Nauta T, van Hinsbergh V, Koolwijk P (2014) Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci 15:19791–19815. https://doi.org/10.3390/ijms151119791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. De Jong OG, Van Balkom BWM, Schiffelers RM et al (2014) Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 5:608. https://doi.org/10.3389/fimmu.2014.00608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yu Y, Zhou Y, Cheng T et al (2016) Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system. Cell Prolif 49:173–184. https://doi.org/10.1111/cpr.12250

    Article  PubMed  CAS  Google Scholar 

  37. Malila Y, Thanatsang K, Arayamethakorn S et al (2019) Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies. PLoS ONE 14:e0220904. https://doi.org/10.1371/journal.pone.0220904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Palazon A, Tyrakis PA, Macias D et al (2017) An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32:669–683.e5. https://doi.org/10.1016/j.ccell.2017.10.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jarvinen TAH, Kannus P, Jarvinen TLN et al (2000) Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports 10:376–382. https://doi.org/10.1034/j.1600-0838.2000.010006376.x

    Article  PubMed  CAS  Google Scholar 

  40. Riley GP, Harrall RL, Cawston TE et al (1996) Tenascin-C and human tendon degeneration. Am J Pathol 149:933–943

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Kim S-A, Kang J-H, Cho I et al (2001) Cell-type specific regulation of thrombospondin-1 expression and its promoter activity by regulatory agents. Exp Mol Med 33:117–123. https://doi.org/10.1038/emm.2001.21

    Article  PubMed  CAS  Google Scholar 

  42. Stenina-Adognravi O (2014) Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 37:69–82. https://doi.org/10.1016/j.matbio.2014.02.001

    Article  PubMed  CAS  Google Scholar 

  43. Norman JT, Lindahl GE, Shakib K et al (2001) The Y-box binding protein YB-1 suppresses collagen α1(I) gene transcription via an evolutionarily conserved regulatory element in the proximal promoter. J Biol Chem 276:29880–29890. https://doi.org/10.1074/jbc.M103145200

    Article  PubMed  CAS  Google Scholar 

  44. El-Naggar AM, Veinotte CJ, Cheng H et al (2015) Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell 27:682–697. https://doi.org/10.1016/j.ccell.2015.04.003

    Article  PubMed  CAS  Google Scholar 

  45. Thankam FG, Dilisio MF, Dougherty KA et al (2016) Triggering receptor expressed on myeloid cells and 5′adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Rev Clin Immunol 12:1239–1249. https://doi.org/10.1080/1744666X.2016.1196138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sira MM, Behairy BE, Abd-Elaziz AM et al (2014) Serum inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) in children with chronic hepatitis C: relation to liver fibrosis and viremia. Hepat Res Treat 2014:1–7. https://doi.org/10.1155/2014/307942

    Article  CAS  Google Scholar 

  47. Chandler KB, Brnakova Z, Sanda M et al (2014) Site-specific glycan microheterogeneity of inter-alpha-trypsin inhibitor heavy chain H4. J Proteome Res 13:3314–3329. https://doi.org/10.1021/pr500394z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kanno T, Yasutake K, Tanaka K et al (2017) A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: implications for small molecule compound-mediated neuroprotection. PLoS ONE 12:e0186227. https://doi.org/10.1371/journal.pone.0186227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Inaoka Y, Osawa M, Mukasa N et al (2015) Allelic imbalance of mRNA associated with α2-HS glycoprotein (fetuin-A) polymorphism. Dis Markers 2015:865053. https://doi.org/10.1155/2015/865053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Arnaud P, Kalabay L (2002) Alpha2-HS glycoprotein: a protein in search of a function. Diabetes Metab Res Rev 18:311–314. https://doi.org/10.1002/dmrr.315

    Article  PubMed  CAS  Google Scholar 

  51. Schure R, Costa KD, Rezaei R et al (2013) Impact of matrix metalloproteinases on inhibition of mineralization by fetuin. J Periodontal Res 48:357–366. https://doi.org/10.1111/jre.12015

    Article  PubMed  CAS  Google Scholar 

  52. Thankam FG, Evan DK, Agrawal DK, Dilisio MF (2018) Collagen type III content of the long head of the biceps tendon as an indicator of glenohumeral arthritis. Mol Cell Biochem. https://doi.org/10.1007/s11010-018-3449-y

    Article  PubMed  Google Scholar 

  53. Hsiao K-C, Shih N-Y, Fang H-L et al (2013) Surface α-enolase promotes extracellular matrix degradation and tumor metastasis and represents a new therapeutic target. PLoS ONE 8:e69354. https://doi.org/10.1371/journal.pone.0069354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sedoris KC, Thomas SD, Miller DM (2010) Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer. https://doi.org/10.1186/1471-2407-10-157

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fan SS, Zong M, Zhang H et al (2015) Decreased expression of alpha-enolase inhibits the proliferation of hypoxia-induced rheumatoid arthritis fibroblasts-like synoviocytes. Mod Rheumatol 25:701–707. https://doi.org/10.3109/14397595.2015.1014141

    Article  PubMed  CAS  Google Scholar 

  56. Banes AJ, Link GW, Bevin AG et al (1988) Tendon synovial cells secrete fibronectin in vivo and in vitro. J Orthop Res 6:73–82. https://doi.org/10.1002/jor.1100060110

    Article  PubMed  CAS  Google Scholar 

  57. Kular JK, Basu S, Sharma RI (2014) The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 5:204173141455711. https://doi.org/10.1177/2041731414557112

    Article  Google Scholar 

  58. Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12:211–227

    Article  CAS  Google Scholar 

  59. Kjær M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698. https://doi.org/10.1152/physrev.00031.2003

    Article  PubMed  Google Scholar 

  60. Neal CL, Xu J, Li P et al (2012) Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene 31:897–906. https://doi.org/10.1038/onc.2011.284

    Article  PubMed  CAS  Google Scholar 

  61. Pennington K, Chan T, Torres M, Andersen J (2018) The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene 37:5587–5604. https://doi.org/10.1038/s41388-018-0348-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tang Y, Lv P, Sun Z et al (2015) 14-3-3ζ up-regulates hypoxia-inducible factor-1α in hepatocellular carcinoma via activation of PI3K/Akt/NF-кB signal transduction pathway. Int J Clin Exp Pathol 8:15845–15853

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Newton DA, Rao KMK, Dluhy RA, Baatz JE (2006) Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem 281:5668–5676. https://doi.org/10.1074/jbc.M509314200

    Article  PubMed  CAS  Google Scholar 

  64. Sousa MM, Amaral JB, Guimarães A, Saraiva MJ (2005) Up-regulation of the extracellular matrix remodeling genes, biglycan, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinase-9 in familial amyloid polyneuropathy. FASEB J 19:124–126. https://doi.org/10.1096/fj.04-2022fje

    Article  PubMed  CAS  Google Scholar 

  65. Sun J, Wei X, Lu Y et al (2017) Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis. Mol Immunol 90:211–218. https://doi.org/10.1016/j.molimm.2017.08.006

    Article  PubMed  CAS  Google Scholar 

  66. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727. https://doi.org/10.1074/jbc.R800045200

    Article  PubMed  CAS  Google Scholar 

  67. Windoffer R, Beil M, Magin TM, Leube RE (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 194:669–678. https://doi.org/10.1083/jcb.201008095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Karantza V (2011) Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30:127–138. https://doi.org/10.1038/onc.2010.456

    Article  PubMed  CAS  Google Scholar 

  69. Na N, Chandel NS, Litvan J, Ridge KM (2010) Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments. FASEB J Off Publ Fed Am Soc Exp Biol 24:799–809. https://doi.org/10.1096/fj.08-128967

    Article  CAS  Google Scholar 

  70. Cai W, He JC, Zhu L et al (2006) Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci USA 103:13801–13806. https://doi.org/10.1073/pnas.0600362103

    Article  PubMed  CAS  Google Scholar 

  71. Torreggiani M, Liu H, Wu J et al (2009) Advanced glycation end product receptor-1 transgenic mice are resistant to inflammation, oxidative stress, and post-injury intimal hyperplasia. Am J Pathol 175:1722–1732. https://doi.org/10.2353/ajpath.2009.090138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Huang S-W, Wang W-T, Chou L-C et al (2016) Diabetes mellitus increases the risk of rotator cuff tear repair surgery: a population-based cohort study. J Diabetes Complicat 30:1473–1477. https://doi.org/10.1016/j.jdiacomp.2016.07.015

    Article  PubMed  Google Scholar 

  73. Collier TA, Nash A, Birch HL, de Leeuw NH (2016) Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: a molecular dynamics simulation study. Biophys Chem 218:42–46. https://doi.org/10.1016/j.bpc.2016.09.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zieman SJ, Kass DA (2004) Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail 10:144–151. https://doi.org/10.1111/j.1527-5299.2004.03223.x

    Article  PubMed  CAS  Google Scholar 

  75. Thakkar D, Grant TM, Hakimi O, Carr AJ (2014) Distribution and expression of type VI collagen and elastic fibers in human rotator cuff tendon tears. Connect Tissue Res 55:397–402. https://doi.org/10.3109/03008207.2014.959119

    Article  PubMed  CAS  Google Scholar 

  76. Theocharidis G, Drymoussi Z, Kao AP et al (2016) Type VI collagen regulates dermal matrix assembly and fibroblast motility. J Invest Dermatol 136:74–83. https://doi.org/10.1038/JID.2015.352

    Article  PubMed  CAS  Google Scholar 

  77. Urciuolo A, Quarta M, Morbidoni V et al (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun 4:1964. https://doi.org/10.1038/ncomms2964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Arai Y, Park S, Choi B et al (2016) Enhancement of matrix metalloproteinase-2 (MMP-2) as a potential chondrogenic marker during chondrogenic differentiation of human adipose-derived stem cells. Int J Mol Sci. https://doi.org/10.3390/ijms17060963

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bowe EA, Murray RC, Jeffcott LB, Davies ME (2007) Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime? Osteoarthr Cartil 15:343–349. https://doi.org/10.1016/j.joca.2006.08.014

    Article  PubMed  CAS  Google Scholar 

  80. Pranjol MZI, Gutowski N, Hannemann M, Whatmore J (2015) The potential role of the proteases cathepsin D and cathepsin L in the progression and metastasis of epithelial Ovarian Cancer. Biomolecules 5:3260–3279. https://doi.org/10.3390/biom5043260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sis B, Saǧol Ö, Küpelioǧlu A et al (2004) Prognostic significance of matrix metalloproteinase-2, cathepsin D, and tenascin-C expression in colorectal carcinoma. Pathol Res Pract 200:379–387. https://doi.org/10.1016/j.prp.2004.02.012

    Article  PubMed  CAS  Google Scholar 

  82. Sis B, Tuna B, Yorukoglu K, Kargi A, Kargi A (2004) Tenascin C and cathepsin D expression in adipocytic tumors: an immunohistochemical investigation of 43 cases. Int J Surg Pathol 12:11–15. https://doi.org/10.1177/106689690401200102

    Article  PubMed  CAS  Google Scholar 

  83. Veidal SS, Karsdal MA, Vassiliadis E et al (2011) MMP mediated degradation of type VI collagen is highly associated with liver fibrosis—identification and validation of a novel biochemical marker assay. PLoS ONE 6:e24753. https://doi.org/10.1371/journal.pone.0024753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bradley E, Bieberich E, Mivechi NF et al (2012) Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells Dayt Ohio 30:1624–1633. https://doi.org/10.1002/stem.1143

    Article  CAS  Google Scholar 

  85. Di Rocco G, Baldari S, Gentile A et al (2018) Protein disulfide isomerase as a prosurvival factor in cell therapy for muscular and vascular diseases. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0986-y

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bakthisaran R, Tangirala R, Rao ChM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta BBA 1854:291–319. https://doi.org/10.1016/j.bbapap.2014.12.019

    Article  PubMed  CAS  Google Scholar 

  87. Li H, Song H, Luo J et al (2012) Knockdown of glucose-regulated protein 78 decreases the invasion, metalloproteinase expression and ECM degradation in hepatocellular carcinoma cells. J Exp Clin Cancer Res CR 31:39. https://doi.org/10.1186/1756-9966-31-39

    Article  PubMed  CAS  Google Scholar 

  88. Dmello C, Sawant S, Alam H et al (2017) Vimentin regulates differentiation switch via modulation of keratin 14 levels and their expression together correlates with poor prognosis in oral cancer patients. PLoS ONE 12:e0172559. https://doi.org/10.1371/journal.pone.0172559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pérez-Sala D, Oeste CL, Martínez AE et al (2015) Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding. Nat Commun. https://doi.org/10.1038/ncomms8287

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thiagarajan PS, Yakubenko VP, Elsori DH et al (2013) Vimentin is an endogenous ligand for the pattern recognition receptor Dectin-1. Cardiovasc Res 99:494–504. https://doi.org/10.1093/cvr/cvt117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Davis ME (2016) Exosomes: what do we love so much about them? Circ Res 119:1280–1282. https://doi.org/10.1161/CIRCRESAHA.116.309942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by LB506 grant to DKA and LB606 Grant to MFD from the State of Nebraska. The research work of DKA is also supported by Grants R01HL120659 and R01HL144125 from the National Institutes of Health. The contents of this original research article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or the State of Nebraska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Ethics declarations

Conflict of interest

All authors have read the journal’s policy on disclosure of potential conflicts of interest and all authors declare that there is no conflict. No writing assistance was utilized in the production of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thankam, F.G., Chandra, I., Diaz, C. et al. Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells. Mol Cell Biochem 465, 75–87 (2020). https://doi.org/10.1007/s11010-019-03669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03669-7

Keywords

Navigation