Skip to main content
Log in

Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Glutaric acidemia I (GAI) is an autosomal recessive metabolic disease caused by a deficiency of glutaryl-CoA dehydrogenase enzyme (GCDH). Patients with GAI are characterized by macrocephaly, acute encephalitis-like crises, dystonia and frontotemporal atrophy. In this study, we investigated 18 Egyptian patients that were diagnosed with GAI based on their clinical, neuroradiological, and biochemical profiles. Of the 18 patients, 16 had developmental delay and/or regression, dystonia was prominent in 75% of the cases, and three patients died. Molecular genetics analysis identified 14 different mutations in the GCDH gene in the 18 patients, of the 14 mutations, nine were missense, three were in the 3′-Untranslated Region (3′-UTR), one was nonsense, and one was a silent mutation. Four novel mutations were identified (c.148 T > A; p.Trp50Arg, c.158C > A; p.Pro53Gln, c.1284C > G; p.Ile428Met, and c.1189G > T; p.Glu397*) that were all absent in 300 normal chromosomes. The 3′-UTR mutation (c.*165A > G; rs8012), was the most frequent mutation observed (0.5; 18/36), followed by the most common mutation among Caucasian patients (p.Arg402Trp; rs121434369) with allele frequency of 0.36 (13/36), and the 3′-UTR mutation (c.*288G > T; rs9384, 0.22; 8/16). The p.Arg257Gln mutation was found with allele frequency of ~0.17 (6/36). The marked homozygosity observed in our patients is probably due to the high level of consanguinity that is observed in 100% of the cases. We used nine in silico prediction tools to predict the pathogenicity (SIFT, PhD-SNP, SNAP, Meta-SNP, PolyPhen2, and Align GVGD) and protein stability (I-Mutant2.0, Mupro, and istable) of the nine missense mutants. The mutant p.Arg402Trp was predicted to be most deleterious by all the six pathogenicity prediction tools and destabilizing by all the three-stability prediction tools, and highly conserved by the ConSurf server. Using the clinical, biochemical, family history of the 18 patients, and the in silico analysis of the missense mutations, our study showed a mix of conclusive and inconclusive genotype-phenotype correlations among our patient’s cohort and suggests the usefulness of using various sophisticated computational analysis to be utilized for future variant classifications in the genetic clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adzhubei, I., D. M. Jordan and S. R. Sunyaev (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7: Unit7.20.

  • Ali SK, Sneha P, Priyadharshini Christy J, Zayed H, George Priya Doss C (2016) Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. J Biomol Struct Dyn:1–11

  • Baric I, Wagner L, Feyh P, Liesert M, Buckel W et al (1999) Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J Inherit Metab Dis 22:867–881

    Article  CAS  PubMed  Google Scholar 

  • Biery BJ, Stein DE, Morton DH, Goodman SI (1996) Gene structure and mutations of glutaryl-coenzyme a dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish. Am J Hum Genet 59:1006–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bijarnia S, Wiley V, Carpenter K, Christodoulou J, Ellaway CJ et al (2008) Glutaric aciduria type I: outcome following detection by newborn screening. J Inherit Metab Dis 31:503–507

    Article  CAS  PubMed  Google Scholar 

  • Boneh A, Beauchamp M, Humphrey M, Watkins J, Peters H et al (2008) Newborn screening for glutaric aciduria type I in Victoria: treatment and outcome. Mol Genet Metab 94:287–291

    Article  CAS  PubMed  Google Scholar 

  • Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35:3823–3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke RE, Fahn S, Marsden CD, Bressman SB, Moskowitz C et al (1985) Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 35:73–77

    Article  CAS  PubMed  Google Scholar 

  • Busquets C, Merinero B, Christensen E, Gelpi JL, Campistol J et al (2000) Glutaryl-CoA dehydrogenase deficiency in Spain: evidence of two groups of patients, genetically, and biochemically distinct. Pediatr Res 48:315–322

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics 14(Suppl 3):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Chace DH, Kalas TA, Naylor EW (2003) Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 49:1797–1817

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics 14(Suppl 2):S5

    Article  Google Scholar 

  • Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Christensen E, Ribes A, Merinero B, Zschocke J (2004) Correlation of genotype and phenotype in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27:861–868

    Article  CAS  PubMed  Google Scholar 

  • Doss CG, Alasmar DR, Bux RI, Sneha P, Bakhsh FD et al (2016) Genetic epidemiology of glucose-6-dehydrogenase deficiency in the Arab world. Sci Rep 6:37284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiou T, Nicolaidou P, Hadjichristou A, Ioannou R, Dionysiou M et al (2014) Molecular analysis of Cypriot patients with Glutaric aciduria type I: identification of two novel mutations. Clin Biochem 47:1300–1305

    Article  CAS  PubMed  Google Scholar 

  • Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D et al (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164

    Article  CAS  PubMed  Google Scholar 

  • Goodman SI, Stein DE, Schlesinger S, Christensen E, Schwartz M et al (1998) Glutaryl-CoA dehydrogenase mutations in glutaric acidemia (type I): review and report of thirty novel mutations. Hum Mutat 12:141–144

    Article  CAS  PubMed  Google Scholar 

  • Greenberg CR, Prasad AN, Dilling LA, Thompson JR, Haworth JC et al (2002) Outcome of the first 3-years of a DNA-based neonatal screening program for glutaric acidemia type 1 in Manitoba and northwestern Ontario, Canada. Mol Genet Metab 75:70–78

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Singh PK, Kumar M, Shastri S, Gulati S et al (2015) Glutaric Acidemia type 1-Clinico-molecular profile and novel mutations in GCDH Gene in Indian patients. JIMD Rep 21:45–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Heringer J, Boy SP, Ensenauer R, Assmann B, Zschocke J et al (2010) Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol 68:743–752

    Article  PubMed  Google Scholar 

  • Hoffmann GF, Trefz FK, Barth PG, Bohles HJ, Biggemann B et al (1991) Glutaryl-coenzyme a dehydrogenase deficiency: a distinct encephalopathy. Pediatrics 88:1194–1203

    CAS  PubMed  Google Scholar 

  • Kim HS, Yu HJ, Lee J, Park HD, Kim JH et al (2014) A Korean patient with glutaric aciduria type 1 with a novel mutation in the glutaryl CoA dehydrogenase gene. Ann Clin Lab Sci 44:213–216

    CAS  PubMed  Google Scholar 

  • Kolker S, Garbade SF, Greenberg CR, Leonard JV, Saudubray JM et al (2006) Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 59:840–847

    Article  PubMed  Google Scholar 

  • Kolker S, Christensen E, Leonard JV, Greenberg CR, Burlina AB et al (2007) Guideline for the diagnosis and management of glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I). J Inherit Metab Dis 30:5–22

    Article  CAS  PubMed  Google Scholar 

  • Korman SH, Jakobs C, Darmin PS, Gutman A, van der Knaap MS et al (2007) Glutaric aciduria type 1: clinical, biochemical and molecular findings in patients from Israel. Eur J Paediatr Neurol 11:81–89

    Article  PubMed  Google Scholar 

  • Lindner M, Kolker S, Schulze A, Christensen E, Greenberg CR et al (2004) Neonatal screening for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27:851–859

    Article  CAS  PubMed  Google Scholar 

  • Mohammad SA, Abdelkhalek HS, Ahmed KA, Zaki OK (2015) Glutaric aciduria type 1: neuroimaging features with clinical correlation. Pediatr Radiol 45:1696–1705

    Article  PubMed  Google Scholar 

  • Moseilhy A, Hassan MM, El Abd HS, Mohammad SA, El Bekay R et al (2016) Severe neurological manifestations in an Egyptian patient with a novel frameshift mutation in the Glutaryl-CoA dehydrogenase gene. Metab Brain Dis

    Google Scholar 

  • Mushimoto Y, Fukuda S, Hasegawa Y, Kobayashi H, Purevsuren J et al (2011) Clinical and molecular investigation of 19 Japanese cases of glutaric acidemia type 1. Mol Genet Metab 102:343–348

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneha P, Kumar D, Tanwar H, Siva R, Doss GP et al (2017) Structural analysis of G1691S variant in the human filamin b gene responsible for Larsen syndrome: a comparative computational approach. J Cell Biochem

    Google Scholar 

  • Strauss KA, Puffenberger EG, Robinson DL, Morton DH (2003) Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet 121c:38–52

    Article  PubMed  Google Scholar 

  • Tang NL, Hui J, Law LK, Lam YY, Chan KY et al (2000) Recurrent and novel mutations of GCDH gene in Chinese glutaric acidemia type I families. Hum Mutat 16:446

    Article  CAS  PubMed  Google Scholar 

  • Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T et al (2006) Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43:295–305

    Article  CAS  PubMed  Google Scholar 

  • Thong MK, Yunus ZM (2008) Spectrum of inherited metabolic disorders in Malaysia. Ann Acad Med Singap 37:66–65

    PubMed  Google Scholar 

  • Wang Q, Li X, Ding Y, Liu Y, Song J et al (2014) Clinical and mutational spectra of 23 Chinese patients with glutaric aciduria type 1. Brain and Development 36:813–822

    Article  CAS  PubMed  Google Scholar 

  • Zaki OK, El Abd HS, Mohamed SA, Zayed H (2016) Novel mutation in an Egyptian patient with infantile Canavan disease. Metab Brain Dis 31:573–577

    Article  CAS  PubMed  Google Scholar 

  • Zaki OK, Krishnamoorthy N, El Abd HS, Harche SA, Mattar RA et al (2017) Two patients with Canavan disease and structural modeling of a novel mutation. Metab Brain Dis 32:171–177

    Article  PubMed  Google Scholar 

  • Zschocke J, Quak E, Guldberg P, Hoffmann GF (2000) Mutation analysis in glutaric aciduria type I. J Med Genet 37:177–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osama K. Zaki or Hatem Zayed.

Ethics declarations

Conflict of interest

All author declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaeilhy, A., Mohamed, M.M., C, G.P.D. et al. Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I. Metab Brain Dis 32, 1417–1426 (2017). https://doi.org/10.1007/s11011-017-0006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0006-4

Keywords

Navigation