Skip to main content

Advertisement

Log in

Hybrids: a new paradigm to treat Alzheimer’s disease

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Alzheimer‘s disease (AD) is a complex neurodegenerative condition with several target proteins contributing to its etiology. With 35.6 million cases worldwide documented in 2011, AD constitutes a devastating health, political, economic, and social problem for all nations. The cases are expected to increase beyond 107 million in 2050; unless an advanced therapy having a capability to delay the disease progression is developed. The curative paradigm of one-compound one-target that has been followed so far has not reached the desired mark. The research focus moved towards single molecule targeting two or more pathogenic mechanisms involved in neuronal death. Over the last few years, medicinal chemists have been paying attention to the design and synthesis of the hybrid molecules that are comprised of two pharmacophores from well-established chemical scaffolds endowed with requisite biological activities in a single entity. The hybrid-based approach has grown to be a central point in the medicinal chemistry field. Various important pharmacophores used for AD have been combined with selected biologically active molecules to get homo- and heterodimers with improved efficacy with additional supplementary actions. This review summarizes the pathogenesis of AD and various progress in the design of hybrid molecules based on the one-compound-various targets paradigm for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A\(\beta \) :

\(\beta \)-Amyloid

ACh:

Acetylcholine

AChE:

Acetylchoinesterase

AChEIs:

Acetylchoinesterase inhibitors

AD:

Alzheimer‘s disease

AGEs:

Advanced glycation end products

APP:

Amyloid Precursor Protein

BACE:

\(\beta \)-Secretase

BBB:

Blood–brain barrier

BuChE:

Acetylcholinesterase

\(\hbox {CB}_{1}\) :

Cannabinoid 1

CBR:

Cannabinoid receptors

ChEs:

Cholinesterases

CNS:

Central nervous system

DNA:

Deoxyribonucleic acid

FDA:

Food & Drug Administration

MAO:

Monoamine oxygenase

MTDL:

Multi-target-directed ligand

NFTs:

Neurofibrillary tangles

NMDAR:

N-methyl-d-aspartate receptor

PAS:

Peripheral anionic site

PKC:

Protein kinase C

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SAR:

Structure–activity relationships

SERT:

Serotonin transporter

TcAChE:

Torpedo californica acetylcholinesterase

THA:

Tetrahydroacridine

References

  1. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222. doi:10.1016/j.cell.2012.02.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Gandy S, DeKosky ST (2013) Toward the treatment and prevention of Alzheimer’s disease: rational strategies and recent progress. Annu Rev Med 64:367–383. doi:10.1146/annurev-med-092611-084441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bartus RT, Dean RL, Pontecorvo MJ, Flicker C (1985) The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann N Y Acad Sci 444:332–358. doi:10.1111/j.1749-6632.1985.tb37600.x

    Article  PubMed  CAS  Google Scholar 

  4. Weinstock M (1999) Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer’s disease. CNS Drugs 12:307–323. doi:10.2165/00023210-199912040-00005

    Article  CAS  Google Scholar 

  5. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344. doi:10.1056/NEJMra0909142

    Article  PubMed  CAS  Google Scholar 

  6. Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372. doi:10.1021/jm7009364

    Article  PubMed  CAS  Google Scholar 

  7. Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer‘s 1907 paper, UbereineeigenartigeErkankung der Hirnrinde. Clin Anat 8:429–431. doi:10.1002/ca.980080612

    Article  PubMed  Google Scholar 

  8. Benzi G, Moretti A (1998) Is there a rationale for the use of acetylcholinesterase inhibitors in the therapy of Alzheimer‘s disease? Eur J Pharmacol 346:1–13

    Article  PubMed  CAS  Google Scholar 

  9. Naslund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, Silberring J, Gandy SE, Winblad B, Greengard P (1994) Relative abundance of Alzheimer A\(\beta \)-amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 91:8378–8382. doi:10.1073/pnas.91.18.8378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kung HF (2012) The \(\beta \)-amyloid Hypothesis in Alzheimer‘s disease: seeing is believing. ACS Med Chem Lett 3:265–267. doi:10.1021/ml300058m

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto CG (1996) Acetylcholinesterase accelerates assembly of amyloid-\(\beta \)-peptides into Alzheimer‘s fibrils: possible role of the peripheral site of the enzyme. J Neuron 16:881–891. doi:10.2174/1567205054367928

    Article  CAS  Google Scholar 

  12. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130

    Article  PubMed  CAS  Google Scholar 

  13. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 70:165–188. doi:10.1016/j.ejmech.2013.09.050

    Article  PubMed  CAS  Google Scholar 

  14. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106. doi:10.1146/annurev.pa.36.040196.000503

    Article  PubMed  CAS  Google Scholar 

  15. Butterfield DA (2003) Amyloid-\(\beta \)-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer‘s disease brain: mechanisms and consequences. Curr Med Chem 10:2651–2659. doi:10.2174/0929867033456422

    Article  PubMed  CAS  Google Scholar 

  16. Small DH (2009) Dysregulation of calcium homeostasis in Alzheimer‘s disease. Neurochem Res 34:1824–1829. doi:10.1007/s11064-009-9960-5

    Article  PubMed  CAS  Google Scholar 

  17. Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:230–295. doi:10.1038/nrn1883

    Article  CAS  Google Scholar 

  18. Degroot A, Kofalvi A, Wade MR, Davis RJ, Rodrigues RJ, Rebola N, Cunha RA, Nomikos GG (2006) CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action. Mol Pharmacol 70:1236–1245. doi:10.1124/mol.106.024661

    Article  PubMed  CAS  Google Scholar 

  19. Greig NH, Giacobini E, Lahiri DK (2007) Advances in Alzheimer therapy and development of innovative new strategies. Curr Alzheimer Res 4:336–339. doi:10.2174/156720507781788819

    Article  PubMed  CAS  Google Scholar 

  20. Munch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation end products in ageing and Alzheimer’s disease. Brain Res Rev 23:134–143. doi:10.1016/S0165-0173(96)00016-1

    Article  PubMed  CAS  Google Scholar 

  21. Schmitt B, Bernhardt T, Moeller HJ, Heuser I, Frolich L (2004) Combination therapy in Alzheimer’s disease: a review of current evidence. CNS Drugs 18:827–844. doi:10.2165/00023210-200418130-00001

    Article  PubMed  CAS  Google Scholar 

  22. Zhang HY (2005) One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett 579:5260–5264. doi:10.1016/j.febslet.2005.09.006

    Article  PubMed  CAS  Google Scholar 

  23. Morphy R, Rankovic Z (2005) Designed multiple ligands: An emerging drug discovery paradigm. J Med Chem 48:6523–6543. doi:10.1021/jm058225d

    Article  PubMed  CAS  Google Scholar 

  24. Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS target in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35. doi:10.1016/j.tips.2004.11.007

    Article  PubMed  CAS  Google Scholar 

  25. Dechy-Cabaret O, Benoit-Vical F, Robert A, Meunier B (2000) Preparation and antimalarial activities of “trioxaquines”, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. Chem Bio Chem 1:281–283. doi:10.1002/1439-7633(20001117)1:4

    Article  PubMed  CAS  Google Scholar 

  26. Kogen H, Toda N, Tago K, Marumoto S, Takami K, Ori M, Yamada N, Koyama K, Naruto S, Abe K, Yamazaki R, Hara T, Aoyagi A, Abe Y, Kaneko T (2002) Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer’s disease. Org Lett 4:3359–3362. doi:10.1021/ol026418e

    Article  PubMed  CAS  Google Scholar 

  27. Dollinger S, Lober S, Klingenstein R, Korth C, Gmeiner P (2006) A chimeric ligand approach leading to potent antiprion active acridine derivatives: design, synthesis, and biological investigations. J Med Chem 49:6591–6595. doi:10.1021/jm060773j

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Franco MI, Fernandez-Bachiller MI, Perez C, Hernandez-Ledesma B, Bartolome B (2006) Novel tacrine–melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 49:459–462. doi:10.1021/jm050746d

    Article  PubMed  CAS  Google Scholar 

  29. Fu H, Li W, Luo J, Lee NT, Li M, Tsim KW, Pang Y, Youdim MB, Han Y (2008) Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces beta-amyloid generation by directly inhibiting BACE-1 activity. Biochem Biophys Res Commun 366:631–636. doi:10.1016/j.bbrc.2007.11.068

    Article  PubMed  CAS  Google Scholar 

  30. Hu MK, Wu LJ, Hsiao G, Yen MH (2002) Homodimerictacrine congeners as acetylcholinesterase inhibitors. J Med Chem 45:2277–2282. doi:10.1021/jm010308g

    Article  PubMed  CAS  Google Scholar 

  31. Carlier PR, Du DM, Han Y, Liu J, Pang YP (1999) Potent, easily synthesized huperzine A-tacrine hybrid acetylcholinesterase inhibitors. Bioorg Med Chem Lett 9:2335–2338. doi:10.1016/S0960-894X(99)00396-0

    Article  PubMed  CAS  Google Scholar 

  32. Shao D, Zou C, Luo C, Tang X, Li Y (2004) Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 14:4639–4642. doi:10.1016/j.bmcl.2004.07.005

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez-Bachiller MI, Perez C, Monjas L, Rademann J, Rodriguez-Franco MI (2012) New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and \(\beta \)-amyloid-reducing properties. J Med Chem 55:1303–1317. doi:10.1021/jm201460y

    Article  PubMed  CAS  Google Scholar 

  34. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, Kim J, Kim EH (2005) Melatonin attenuates amyloid-\(\beta _{25-35}\)-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett 380:26–31. doi:10.1016/j.neulet.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  35. Rosini M, Simoni E, Bartolini M, Cavalli A, Ceccarini L, Pascu N, McClymont DW, Tarozzi A, Bolognesi ML, Minarini A, Tumiatti V, Andrisano V, Mellor IR, Melchiorre C (2008) Inhibition of acetylcholinesterase, beta-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J Med Chem 51:4381–4384. doi:10.1021/jm050746d

    Article  PubMed  CAS  Google Scholar 

  36. Lysko PG, Lysko KA, Webb CL, Feuerstein G, Mason PE, Walter MF, Mason RP (1998) Neuroprotective activities of carvedilol and a hydroxylated derivative: role of membrane biophysical interactions. Biochem Pharmacol 56:1645–1656. doi:10.1016/S0006-2952(98)00275-5

    Article  PubMed  CAS  Google Scholar 

  37. Thiratmatrakul S, Yenjai C, Waiwut P, Vajragupta O, Reubroycharoen P, Tohda M, Boonyarat C (2014) Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 75:21–30. doi:10.1016/j.ejmech.2014.01.020

    Article  PubMed  CAS  Google Scholar 

  38. Lange JH, Coolen HK, van Stuivenberg HH, Dijksman JA, Herremans AH, Ronken E, Keizer HG, Tipker K, McCreary AC, Veerman W, Wals HC, Stork B, Verveer PC, den Hartog AP, de Jong NM, Adolfs TJ, Hoogendoorn J, Kruse CG (2004) Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J Med Chem 47:627–643. doi:10.1021/jm031019q

    Article  PubMed  CAS  Google Scholar 

  39. Lange JH, van Stuivenberg HH, Coolen HK, Adolfs TJ, McCreary AC, Keizer HG, Wals HC, Veerman W, Borst AJ, de Looff W, Verveer PC, Kruse CG (2005) Bioisosteric replacements of the pyrazole moiety of rimonabant: synthesis, biological properties, and molecular modeling investigations of thiazoles, triazoles, and imidazoles as potent and selective CB1 cannabinoid receptor antagonists. J Med Chem 48:1823–1838. doi:10.1021/jm040843r

    Article  PubMed  CAS  Google Scholar 

  40. Fisher A (2008) M1 muscarinic agonists target major hallmarks of Alzheimer’s disease-the pivotal role of brain M1 receptors. Neurodegener Dis 5:237–240. doi:10.1159/000113712

    Article  PubMed  CAS  Google Scholar 

  41. Fang L, Jumpertz S, Zhang Y, Appenroth D, Fleck C, Mohr K, Trankle C, Decker M (2010) Hybrid molecules from xanomeline and tacrine: enhanced tacrine actions on cholinesterases and muscarinic M1 receptors. J Med Chem 53:2094–2103. doi:10.1021/jm901616h

    Article  PubMed  CAS  Google Scholar 

  42. Camps P, Formosa X, Galdeano C, Gomez T, Munoz-Torrero D, Scarpellini M, Viayna E, Badia A, Clos MV, Camins A, Pallas M, Bartolini M, Mancini F, Andrisano V, Estelrich J, Lizondo M, Bidon-Chanal A, Luque FJ (2008) Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem 51:3588–3598. doi:10.1021/jm8001313

    Article  PubMed  CAS  Google Scholar 

  43. Carlier PR, Chow ES, Han Y, Liu J, El Yazal J, Pang YP (1999) Heterodimerictacrine-based acetylcholinesterase inhibitors: investigating ligand-peripheral site interactions. J Med Chem 42:4225–4231. doi:10.1021/jm990224w

    Article  PubMed  CAS  Google Scholar 

  44. Alonso D, Dorronsoro I, Rubio L, Munoz P, Garcia-Palomero E, Del Monte M, Bidon-Chaal A, Orozco M, Luque FJ, Castro A, Medina M, Martinez A (2005) Donepezile-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg Med Chem 13:6588–6597. doi:10.1016/j.bmc.2005.09.029

    Article  PubMed  CAS  Google Scholar 

  45. Tang H, Zhao L, Zhao H, Huang S, Zhong S, Qin J, Chen Z, Huang Z, Liang H (2011) Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced \(\beta \)-amyloid aggregation inhibitors. Eur J Med Chem 46:4970–4979. doi:10.1016/j.ejmech.2011.08.002

    Article  PubMed  CAS  Google Scholar 

  46. Badia A, Banos JE, Camps P, Contreras J, Gorbig DM, Diego Munoz-Torrero DM, Simon M, Vivas NM (1998) Synthesis and evaluation of tacrine–huperzine a hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer’s disease. Bioorg Med Chem 6:427–440. doi:10.1016/S0968-0896(98)00015-7

    Article  PubMed  CAS  Google Scholar 

  47. Camps P, Formosa X, Munoz-Torrero D, Petrignet J, Badia A, Clos V (2005) Synthesis and pharmacological evaluation of huprine–tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors. J Med Chem 48:1701–1704. doi:10.1021/jm0496741

    Article  PubMed  CAS  Google Scholar 

  48. Camps P, El Achab R, Gorbig D, Morral J, Munoz-Torrero D, Badia A, Banos JE, Vivas NM, Barril X, Orozco M, Luque FJ (1999) Synthesis, in vitro pharmacology, and molecular modeling of very potent tacrine–huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer’s disease. J Med Chem 42:3227–3242. doi:10.1021/jm980620z

    Article  PubMed  CAS  Google Scholar 

  49. Camps P, Gomez E, Munoz-Torrero D, Badia A, Vivas NM, Barril X, Orozco M, Luque FJ (2001) Synthesis, in vitro pharmacology, and molecular modeling of syn-huprines as acetylcholinesterase inhibitors. J Med Chem 44:4733–4736. doi:10.1021/jm010949b

    Article  PubMed  CAS  Google Scholar 

  50. Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X (2013) Novel tacrine-ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett 23:6737–6742. doi:10.1016/j.bmcl.2013.10.034

    Article  PubMed  CAS  Google Scholar 

  51. Van der Zee EA, Platt B, Riedel G (2011) Acetylcholine: future research and perspectives. Behav Brain Res 221:583–586. doi:10.1016/j.bbr.2011.01.050

    Article  PubMed  CAS  Google Scholar 

  52. Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Munch G (2007) Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther 113:154–164. doi:10.1016/j.pharmthera.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  53. Fang L, Kraus B, Lehmann J, Heilmann J, Zhang Y, Decker M (2008) Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg MedChem Lett 18:2905–2909. doi:10.1016/j.bmcl.2008.03.073

    Article  CAS  Google Scholar 

  54. Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH, Song DK (2001) Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133:89–96. doi:10.1038/sj.bjp.0704047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xie SS, Lan JS, Wang XB, Jiang N, Dong G, Li Z, Wang KDG, Guo PP, Kong LY (2015) Multifunctional tacrine–trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur J Med Chem 93:42–50. doi:10.1016/j.ejmech.2015.01.058

    Article  PubMed  CAS  Google Scholar 

  56. Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A, Recanatini M, Andrisano V, Rampa A (2010) Targeting Alzheimer’s disease: novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem 18:1749–1760. doi:10.1016/j.bmc.2010.01.071

    Article  PubMed  CAS  Google Scholar 

  57. Contreras JM, Rival YM, Chayer S, Bourguignon JJ, Wermuth CG (1999) Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem 42:730–741. doi:10.1021/jm981101z

    Article  PubMed  CAS  Google Scholar 

  58. Contreras JM, Parrot I, Sippl W, Rival YM, Wermuth CG (2001) Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. J Med Chem 44:2707–2718. doi:10.1021/jm001088u

    Article  PubMed  CAS  Google Scholar 

  59. Bautista-Aguilera OM, Esteban G, Bolea I, Nikolic K, Agbaba D, Moraleda I, Iriepa I, Samadi A, Soriano E, Unzeta M, Marco-Contelles J (2014) Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. Eur J Med Chem 75:82–95. doi:10.1016/j.ejmech.2013.12.028

    Article  PubMed  CAS  Google Scholar 

  60. Wang L, Esteban G, Ojima M, Bautista-Aguilera OM, Inokuchi T, Moraleda I, Iriepa I, Samadi A, Youdim MB, Romero A, Soriano E, Herrero R, Fernandez AP, Murillo RM, Marco-Contelles J, Unzeta M (2014) Donepezil+propargylamine+8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur J Med Chem 80:543–561. doi:10.1016/j.ejmech.2014.04.078

    Article  PubMed  CAS  Google Scholar 

  61. Luo Z, Sheng J, SunY LuC, Yan J, Liu A, Luo H, Huang L, Li X (2013) Synthesis and Evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J Med Chem 56:9089–9099. doi:10.1021/jm401047q

    Article  PubMed  CAS  Google Scholar 

  62. Weinstock M, Goren T, Youdim MBH (2000) Development of a novel neuroprotectivedrug (TV3326) for the treatment of Alzheimer’s disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev Res 50:216–222. doi:10.1002/1098-2299(200007/08)50:3/4

    Article  CAS  Google Scholar 

  63. Youdim MBH, Weinstock M (2002) Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate. Cell Mol Neurobiol 21:555–573. doi:10.1023/A:1015131516649

    Article  Google Scholar 

  64. Kogen H, Toda N, Tago K, Marumoto S, Takami K, Ori M, Yamada N, Koyama K, Naruto S, Be K, Yamazaki R, Hara T, Aoyagi A, Abe Y, Kaneko T (2002) Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer’s disease. Org Lett 4:3359–3362. doi:10.1021/ol026418e

    Article  PubMed  CAS  Google Scholar 

  65. Toda N, Tago K, Marumoto S, Takami K, Ori M, Yamada N, Koyama K, Naruto S, Abe K, Yamazaki R, Hara T, Aoyagi A, Abe Y, Kaneko T, Kogen H (2003) A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer’s disease. Bioorg Med Chem 11:4389–4415. doi:10.1016/S0968-0896(03)00452-8

    Article  PubMed  CAS  Google Scholar 

  66. Sang Z, Li Y, Qiang X, Xiao G, Liu Q, Tan Z, Deng Y (2015) Multifunctional scutellarin-rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease. Bioorg Med Chem 23:668–680. doi:10.1016/j.bmc.2015.01.005

    Article  PubMed  CAS  Google Scholar 

  67. Guillou C, Mary A, Renko DZ, Gras E, Thal C (2000) Potent acetylcholinesterase inhibitors: design, synthesis and structure-activity relationships of alkylene linked bis-galanthamine and galanthamine-galanthaminium salts. Bioorg Med Chem Lett 10:637–639. doi:10.1016/S0960-894X(00)00059-7

    Article  PubMed  CAS  Google Scholar 

  68. Mary A, Renko DZ, Guillou C, Thal C (1998) Potent acetylcholinesterase inhibitors: design, synthesis, and structure-activity relationships of bis-interacting ligands in the galanthamine series. Bioorg Med Chem 6:1835–1850. doi:10.1016/S0968-0896(98)00133-3

    Article  PubMed  CAS  Google Scholar 

  69. Recanatini M, Valenti P (2004) Acetylcholinesterase inhibitors as a starting point towards improved Alzheimer’s disease therapeutics. Curr Pharm Des 10:3157–3166. doi:10.2174/1381612043383313

    Article  PubMed  CAS  Google Scholar 

  70. Rampa A, Piazzi L, Belluti F, Gobbi S, Bisi A, Bartolini M, Andrisano V, Cavrini V, Cavalli A, Recanatini M, Valenti P (2001) Acetylcholinesterase inhibitors: SAR and kinetic studies on omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl derivatives. J Med Chem 44:3810–3820. doi:10.1021/jm010914b

    Article  PubMed  CAS  Google Scholar 

  71. Fink DM, Palermo MG, Bores GM, Huger FP, Kurys BE, Merriman MC, Olsen GE, Petko W, O’Malley GJ (1996) Imino 1,2,3,4-tetrahydrocyclopent[b]indole carbamates as dual inhibitors of acetylcholinesterase and monoamine oxidase. Bioorg Med Chem Lett 6:625–630. doi:10.1016/0960-894X(96)00072-8

    Article  CAS  Google Scholar 

  72. Sterling J, Herzig Y, Goren T, Finkelstein N, Lerner D, Goldenberg W, Miskolczi I, Molnar S, Rantal F, Tamas T, Toth G, Zagyva A, Zekany A, Lavian G, Gross A, Friedman R, Razin M, Huang W, Krais B, Chorev M, Youdim MB, Weinstock M (2002) Novel dual inhibitors of AChE and MAO derived from hydroxyaminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J Med Chem 45:5260–5279. doi:10.1021/jm020120c

    Article  PubMed  CAS  Google Scholar 

  73. Rampa A, Bisi A, Valenti P, Recanatini M, Cavalli A, Andrisano V, Cavrini V, Fin L, Buriani A, Giusti PJ (1998) Acetylcholinesterase inhibitors: synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxyheteroaryl derivatives. J Med Chem 41:3976–3986. doi:10.1021/jm9810046

    Article  PubMed  CAS  Google Scholar 

  74. Viayna E, Sola I, Bartolini M, DeSimone A, Rojas CT, Serrano FG, Sabaté R, Jiménez JJ, Pérez B, Luque FJ, Andrisano V, Clos MV, Inestrosa NC, Torrero DM (2014) Synthesis and multitarget biological profiling of a novel family of Rhein derivatives as disease-modifying anti-alzheimer agents. J Med Chem 57:2549–2567. doi:10.1021/jm401824w

    Article  PubMed  CAS  Google Scholar 

  75. Alptuzun V, Kapkova P, Baumann K, Erciyas E, Holzgrabe U (2003) Synthesis and biological activity of pyridinium-type acetylcholinesterase inhibitors. J Pharm Pharmacol 55:1397–1404. doi:10.1211/0022357021855

    Article  PubMed  CAS  Google Scholar 

  76. Kapkova P, Alptuzun V, Frey P, Erciyas E, Holzgrabe U (2006) Search for dual function inhibitors for Alzheimer’s disease: synthesis and biological activity of acetylcholinesterase inhibitors of pyridinium-type and their A\(\beta \) fibril formation inhibition capacity. Bioorg Med Chem 14:472–478. doi:10.1016/j.bmc.2005.08.034

    Article  PubMed  CAS  Google Scholar 

  77. Kapkova P, Stiefl N, Surig U, Engels B, Baumann K, Holzgrabe U (2003) Synthesis, biological activity and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Arch Pharm (Weinheim) 336:523–540. doi:10.1002/ardp.200300795

    Article  CAS  Google Scholar 

  78. Paz A, Xie Q, Greenblatt HM, Fu W, Tang Y, Qiu Z, Sussman JL (2009) The crystal structure of a complex of acetylcholinesterase with bis-(\(-\))-nor-meptazinol derivative reveals disruption of the catalytic triad. J Med Chem 52:2543–2549. doi:10.1021/jm801657v

    Article  PubMed  CAS  Google Scholar 

  79. Xie Q, Wang H, Xia Z, Lu M, Zhang W, Wang X, Fu W, Tang Y, Sheng W, Li W, Zhou W, Zhu X, Qiu Z, Chen H (2008) Bis-(\(-\))-nor-meptazinols as novel nanomolar cholinesterase inhibitors with high inhibitory potency on amyloid-beta aggregation. J Med Chem 51:2027–2036. doi:10.1021/jm070154q

    Article  PubMed  CAS  Google Scholar 

  80. Sheng R, Lin X, Li J, Jiang Y, Shang Z, Hu Y (2005) Design, synthesis, and evaluation of 2-phenoxy-indan-1-one derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 15:3834–3837. doi:10.1016/j.bmcl.2005.05.132

    Article  PubMed  CAS  Google Scholar 

  81. Villalobos A, Blake JF, Biggers CK, Butler TW, Chapin DS, Chen YL, Ives JL, Jones SB, Liston DR, Nagel AA, Nason DM, Nielsen JA, Shalaby IA, White WF (1994) Novel benzisoxazole derivatives as potent and selective inhibitors of acetylcholinesterase. J Med Chem 37:2721–2734. doi:10.1021/jm00043a012

    Article  PubMed  CAS  Google Scholar 

  82. Villalobos A, Butler TW, Chapin DS, Chen YL, DeMattos SB, Ives JL, Jones SB, Liston DR, Nagel AA, Nason DM, Nielsen JA, Ramírez AD, Shalaby IA, White WF (1995) 5,7-dihydro-3-[2-[1-(phenylmethyl)-4-piperidinyl]ethyl]-6H- pyrrolo[3,2-f]-1,2-benzisoxazol-6-one: a potent and centrally-selective inhibitor of acetylcholinesterase with an improved margin of safety. J Med Chem 38:2802–2808. doi:10.1021/jm00015a002

    Article  PubMed  CAS  Google Scholar 

  83. Martinez A, Fernandez E, Castro A, Conde S, Rodriguez-Franco I, Banos JE, Badia A (2000) N-Benzylpiperidine derivatives of 1,2,4-thiadiazolidinone as new acetylcholinesterase inhibitors. Eur J Med Chem 35:913–922. doi:10.1016/S0223-5234(00)01166-1

    Article  PubMed  CAS  Google Scholar 

  84. Andreani A, Cavalli A, Granaiola M, Guardigli M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Recanatini M, Roda AJ (2001) Synthesis and screening for anti-acetylcholinesterase activity of (1-benzyl-4-oxopiperidin-3-ylidene)methylindoles and -pyrroles related to donepezil. J Med Chem 44:4011–4014. doi:10.1021/jm0109356

    Article  PubMed  CAS  Google Scholar 

  85. Arce MP, Rodriguez-Franco MI, Gonzalez-Munoz GC, Perez C, Lopez B, Villarroya M, Lopez MG, Garcia AG, Conde S (2009) Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer’s disease. J Med Chem 52:7249–7257. doi:10.1021/jm900628z

    Article  PubMed  CAS  Google Scholar 

  86. Prokai-Tatrai K, Nguyen V, Zharikova AD, Braddy AC, Stevens SM, Prokai L (2003) Prodrugs to enhance central nervous system effects of the TRH-like peptide pGlu-Glu-Pro-NH2. Bioorg Med Chem Lett 13:1011–1014. doi:10.1016/S0960-894X(03)00081-7

    Article  PubMed  CAS  Google Scholar 

  87. Doucet-Personeni C, Bentley PD, Fletcher RJ, Kinkaid A, Kryger G, Pirard B, Taylor A, Taylor R, Taylor J, Viner R, Silman I, Sussman JL, Greenblatt HM, Lewis TJ (2001) A structure-based design approach to the development of novel, reversible AChE inhibitors. J Med Chem 44:3203–3215. doi:10.1021/jm010826r

    Article  PubMed  CAS  Google Scholar 

  88. Kang SS, Lee JY, Choi YK, Song SS, Kim JS, Jeon SJ, Han YN, Son KH, Han BH (2005) Neuroprotective effects of naturally occurring biflavonoids. Bioorg Med Chem Lett 15:3588–3591. doi:10.1016/j.bmcl.2005.05.078yuio0

    Article  PubMed  CAS  Google Scholar 

  89. Cavalli A, Bolognesi ML, Capsoni S, Andrisano V, Bartolini M, Margotti E, Cattaneo A, Recanatini M, Melchiorre C (2007) A small molecule targeting the multifactorial nature of Alzheimer’s disease. Angew Chem Int Ed Engl 46:3689–3692. doi:10.1002/anie.200700256

    Article  PubMed  CAS  Google Scholar 

  90. Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386. doi:10.1023/B:JOBB.0000041772.74810.92

    Article  PubMed  CAS  Google Scholar 

  91. Bolognesi ML, Cavalli A, Melchiorre C (2009) Memoquin: a multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer’s disease. Neurotherapeutics 6:152–162. doi:10.1016/j.nurt.2008.10.042

    Article  PubMed  CAS  Google Scholar 

  92. Bolognesi ML, Cavalli A, Bergamini C, Fato R, Lenaz G, Rosini M, Bartolini M, Andrisano V, Melchiorre C (2009) Toward a rational design of multitarget-directed antioxidants: merging memoquin and lipoic acid molecular frameworks. J Med Chem 52:7883–7886. doi:10.1021/jm901123n

    Article  PubMed  CAS  Google Scholar 

  93. Huang L, Shi A, He F, Li X (2010) Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Bioorg Med Chem 18:1244–1251. doi:10.1016/j.bmc.2009.12.035

    Article  PubMed  CAS  Google Scholar 

  94. Lopez-Iglesias B, Perez C, García JM, Gil SA, Perez-Castillo A, Romero A, Lopez MG, Villarroya M, Conde S, Rodriguez-Franco MI (2014) New melatonin-N, N-dibenzyl(N-methyl)amine hybrids: potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. J Med Chem 57:3773–3785. doi:10.1021/jm5000613

  95. Melchiorre C, Antonello A, Banzi R, Bolognesi ML, MinariniA Rosini M, Tumiatti V (2003) Polymethylenetetraamine backbone as template for the development of biologically active polyamines. Med Res Rev 23:200–233. doi:10.1002/med.10029

    Article  PubMed  CAS  Google Scholar 

  96. Melchiorre C, Andrisano V, Bolognesi ML, Budriesi R, Cavalli A, Cavrini V, Rosini M, Tumiatti V, Recanatini M (1998) Acetylcholinesterasenoncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer’s disease. J Med Chem 41:4186–4189. doi:10.1021/jm9810452

    Article  PubMed  CAS  Google Scholar 

  97. Rizzo S, Riviere C, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Morroni F, Tarozzi A, Monti JP, Rampa A (2008) Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, beta amyloid aggregation, and A\(\beta \) neurotoxicity. J Med Chem 51:2883–2886. doi:10.1021/jm8002747

  98. Howlett DR, Perry AE, Godfrey F, Swatton JE, Jennings KH, Spitzfaden C, Wadsworth H, Wood SJ, Markwell RE (1999) Inhibition of fibril formation in beta-amyloid peptide by a novel series of benzofurans. Biochem J 340:283–289. doi:10.1107/S1600536814019229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to my many colleagues and assistants for critical review and editorial assistance with the manuscript. We wish to thank the ‘Indian Council of Medical Research (ICMR)’, New Delhi, for providing us a Senior Research Fellowship (ICMR-SRF); Award No. BIC/11(11)/2014 and BIC/11(02)/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Silakari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kaur, M., Chadha, N. et al. Hybrids: a new paradigm to treat Alzheimer’s disease. Mol Divers 20, 271–297 (2016). https://doi.org/10.1007/s11030-015-9628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9628-9

Keywords

Navigation