Skip to main content

Advertisement

Log in

Molecular cloning and preliminary analysis of the human α-methylacyl-CoA racemase promoter

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

α-Methylacyl-CoA racemase (AMACR) is an enzyme involved in β-oxidation of branched-chain fatty acids and bile acid intermediates. Recent works have revealed that AMACR is overexpressed in prostate cancer and functionally important for the growth of prostate cancer cells. Despite the recent interest in AMACR as a diagnostic marker for prostate cancer, little is known about the transcriptional regulation of AMACR in prostate cancer. To elucidate the regulation of the AMACR gene, a 2.3-kb fragment of its 5′ flanking region was cloned into pGL3-Basic, then using tansfection and Dual-luciferase reporter assay, a preliminary analysis on promoter activity and function of this 2.3-kb sequence was carried out. This 2.3-kb fragment represented promoter activity that consistent with the expression level in LNCaP and PC-3 cells respectively. Transfection experiments of 5′-deletion mutants into LNCaP cells revealed a positive-regulatory region located between nucleotides −423 and −93 that may be responsible for AMACR transactivation in LNCaP cells. Cotransfection experiments revealed that promoter activity of this 2.3-kb sequence was down-regulated by C/EBPα, p53, NF-κB p50. And data from luciferase-based reporter assays suggest that the promoter function of AMACR is independent of androgen receptor-mediated signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferdinandusse S, Denis S, Clayton PT, Graham A, Rees JE, Allen JT, McLean BN, Brown AY, Vreken P, Waterham HR, Wanders RJ (2000) Mutations in the gene encoding peroxisomal α-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 24:188–191

    Article  PubMed  CAS  Google Scholar 

  2. Jiang Z, Woda BA, Yang XJ (2002) α-methylacyl coenzyme A racemase as a marker for prostate cancer. JAMA 287:3080–3081

    Article  PubMed  Google Scholar 

  3. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, Ewing CM, Platz EA, Ferdinandusse S, Wanders RJ, Trent JM, Isaacs WB, De Marzo AM (2002) α-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 62:2220–2226

    PubMed  CAS  Google Scholar 

  4. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM (2002) α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287:1662–1670

    Article  PubMed  CAS  Google Scholar 

  5. Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, Reed SG, Xu J, Fanger GR (2001) P504S: a new molecular marker for the detection of prostate carcimona. Am J Surg Pathol 25:1397–1404

    Article  PubMed  CAS  Google Scholar 

  6. Zha S, Ferdinandusse S, Denis S, Wanders RJ, Ewing CM, Luo J, De Marzo AM, Isaacs WB (2003) α-methylacyl-CoA racemase as an androgen independent growth modifier in prostate cancer. Cancer Res 63:7365–7376

    PubMed  CAS  Google Scholar 

  7. Kuefer R, Varambally S, Zhou M, Lucas PC, Loeffler M, Wolter H, Mattfeldt T, Hautmann RE, Gschwend JE, Barrette TR, Dunn RL, Chinnaiyan AM, Rubin MA (2002) α-Methylacyl-CoA Racemase: expression levels of this novel cancer biomarker depend on tumor differentiation. Am J Pathol 161:841–848

    PubMed  CAS  Google Scholar 

  8. Zha S, Isaacs WB (2005) A nonclassic CCAAT enhancer element binding protein binding site contributes to α-Methylacyl-CoA Racemase expression in prostate cancer. Mol Cancer Res 3:110–118

    Article  PubMed  CAS  Google Scholar 

  9. Meyers FJ, Gumerlock PH, Chi SG, Borchers H, Deitch AD, deVere White RW (1998) Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer 83:2534–2539

    Article  PubMed  CAS  Google Scholar 

  10. Burchardt M, Burchardt T, Shabsigh A, Ghafar M, Chen MW, Anastasiadis A, de la Taille A, Kiss A, Buttyan R (2001) Reduction of wild type p53 function confers a hormone resistant phenotype on LNCaP prostate cancer cells. Prostate 48:225–230

    Article  PubMed  CAS  Google Scholar 

  11. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  PubMed  CAS  Google Scholar 

  12. Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13:4816–4822

    PubMed  CAS  Google Scholar 

  13. Kley N, Chung RY, Fay S, Loeffler JP, Seizinger BR (1992) Repression of the basal c-fos promoter by wild-type p53. Nucleic Acids Res 20:4083–4087

    Article  PubMed  CAS  Google Scholar 

  14. Miyashita T, Harigai M, Hanada M, Reed JC (1994) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54:3131–3135

    PubMed  CAS  Google Scholar 

  15. Werner H, Karnieli E, Rauscher FJ, LeRoith D (1996) Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA 93:8318–8323

    Article  PubMed  CAS  Google Scholar 

  16. Liu X, Miller CW, Koeffler PH, Berk AJ (1993) The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biol 13:3291–3300

    PubMed  CAS  Google Scholar 

  17. Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T (1992) Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89:12028–12032

    Article  PubMed  CAS  Google Scholar 

  18. Borellini F, Glazer RI (1993) Induction of Sp1-p53 DNA-binding heterocomplexes during granulocyte/macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1. J Biol Chem 268:7923–7928

    PubMed  CAS  Google Scholar 

  19. Agoff SN, Hou J, Linzer DI, Wu B (1993) Regulation of the human hsp70 promoter by p53. Science 259:84–87

    Article  PubMed  CAS  Google Scholar 

  20. Desdouets C, Ory C, Matesic G, Soussi T, Brechot C, Sobczak-Thepot J (1996) ATF/CREB site mediated transcriptional activation and p53 dependent repression of the cyclin A promoter. FEBS Lett 385:34–38

    Article  PubMed  CAS  Google Scholar 

  21. Lekstrom-Himes J, Xanthopoulos KG (1998) Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 273:28545–28548

    Article  PubMed  CAS  Google Scholar 

  22. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG (2001) Dominant negative mutations of CEBPA, encoding CCAAT/enhancer bindingprotein-α (C/EBPα), in acute myeloid leukemia. Nat Genet 27:263–270

    Article  PubMed  CAS  Google Scholar 

  23. Halmos B, Huettner CS, Kocher O, Ferenczi K, Karp DD, Tenen DG (2002) Down-regulation and antiproliferative role of C/EBPα in lung cancer. Cancer Res 62:528–534

    PubMed  CAS  Google Scholar 

  24. Gery S, Tanosaki S, Bose S, Bose N, Vadgama J, Koeffler HP (2005) Down-regulation and growth inhibitory role of C/EBP α in breast cancer. Clin Cancer Res 11:3184–3190

    Article  PubMed  CAS  Google Scholar 

  25. Timchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ (1996) CCAAT/enhancer-binding protein α (C/EBPα) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 10:804–805

    Article  PubMed  CAS  Google Scholar 

  26. Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM, Friis-Hansen L, Nerlov C (2001) E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107:247–248

    Article  PubMed  CAS  Google Scholar 

  27. Yin H, Radomska HS, Tenen DG, Glass J (2006) Down regulation of PSA by C/EBP α is associated with loss of AR expression and inhibition of PSA promoter activity in the LNCaP cell line. BMC Cancer 6:158

    Article  PubMed  Google Scholar 

  28. Chattopadhyay S, Gong EY, Hwang M, Park E, Lee HJ, Hong CY, Choi HS, Cheong JH, Kwon HB, Lee K (2006) The CCAAT enhancer-binding protein-α negatively regulates the transactivation of androgen receptor in prostate cancer cells. Mol Endocrinol 20:984–995

    Article  PubMed  CAS  Google Scholar 

  29. Foo SY, Nolan GP (1999) NF-κB to the rescue: RELs, apoptosis and cellular transformation. Trends Genet 15:229–235

    Article  PubMed  CAS  Google Scholar 

  30. Seitz CS, Lin Q, Deng H, Khavari PA (1998) Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc Natl Acad Sci USA 95:2307–2312

    Article  PubMed  CAS  Google Scholar 

  31. Ko S, Shi L, Kim S, Song CS, Chatterjee B (2007) Interplay of NF-κB and B-myb in the negative regulation of androgen receptor expression by TNFα. Mol Endocrinol. doi:10.1210/me.2007-0332

    PubMed  Google Scholar 

  32. Cinar B, Yeung F, Konaka H, Mayo MW, Freeman MR, Zhau HE, Chung LW (2004) Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-κB signalling in prostate cancer cells. Biochem J 379:421–431

    Article  PubMed  CAS  Google Scholar 

  33. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149

    Article  PubMed  CAS  Google Scholar 

  34. Dehm SM, Tindall DJ (2006) Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99:333–344

    Article  PubMed  CAS  Google Scholar 

  35. Coutinho-Camillo CM, Salaorni S, Sarkis AS, Nagai MA (2006) Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. Cancer Genet Cytogenet 166:130–138

    Article  PubMed  CAS  Google Scholar 

  36. Mobley JA, Leav I, Zielie P, Wotkowitz C, Evans J, Lam YW, L’Esperance BS, Jiang Z, Ho SM (2003) Branched fatty acids in dairy and beef products markedly enhance α-methylacyl-CoA racemase expression in prostate cancer cells in vitro. Cancer Epidemiol Biomarkers Prev 12:775–783

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Young for kindly providing the pcDNA3.1-Sp1, pcDNA3.1-PTEN and pSG5-hAR, Dr. Shao for kindly providing the pcDNA3.1-PPARγ 2 and pcDNA3.1-C/EBPα, Dr. He for kindly providing the pBABEpuro-ras and pBABEhygro-myc used in this study. This work was supported by the National Natural Science Foundation supporting project (No. 30371564).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anli Jiang or Jianye Zhang.

Additional information

W. Chen and W. Wu contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Wu, W., Zhao, J. et al. Molecular cloning and preliminary analysis of the human α-methylacyl-CoA racemase promoter. Mol Biol Rep 36, 423–430 (2009). https://doi.org/10.1007/s11033-007-9196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9196-x

Keywords

Navigation