Skip to main content

Advertisement

Log in

Molecular cloning and characterization of the UL31 gene from Duck enteritis virus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Using a combination of bioinformation analysis and Dot blot technique, a gene, designated hereafter as the duck enteritis virus (DEV) UL31 gene (GenBank accession number EF643559), was identified from the DEV CHv genomic library. Then, the UL31 gene was cloned and sequenced, which was composed of 933 nucleotides encoding 310 amino acids. Multiple sequence alignment suggested that the UL31 gene was highly conserved in Alphaherpesvirinae and similar to the other herpesviral UL31. Phylogenetic analysis showed that the gene had a close evolutionary relationship with the avian herperviruses, and DEV should be placed into a single cluster within the subfamily Alphaherpesvirinae. Antigen prediction indicated that several potential B-cell epitopes sites located in the UL31 protein. To further study, the UL31 gene was cloned into a pET prokaryotic expression vector and transformed into Escherichia coli BL21 (DE3). A 55 kDa fusion protein was induced by the further culture at 37°C after addition of 0.8 mM IPTG. Polyclonal antibody raised against the recombinant UL31 from rabbit was prepared. A protein about 55 kDa that reacted with the antibody was detected in immunoblots of bacterial proteins, suggesting that the 55 kDa protein was the product of the UL31 gene. Immunofluorescence analysis revealed that the protein was localized in very fine punctate forms in the nuclei of infected cells. Our results may provide some insight for further research about the gene and also enrich the database of herpesvirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DEV:

Duck enteritis virus

HSV-1:

Herpes simplex virus 1

HCMV:

Human cytomegalovirus

EBV:

Epstein-barr virus

DVE:

Duck viral enteritis

HHV-3:

Human herpesvirus 3

MDV-1:

Marek’s disease virus type 1

CeHV-9:

Cercopithecine herpesvirus 9

MeHV-1:

Meleagrid herpesvirus 1

EHV-1:

Equid herpesvirus 1

BoHV-5:

Bovine herpesvirus 5

MDV-2:

Marek’s disease virus type 2

ILTV:

Infection laryngotracheitis virus

CeHV-16:

Cercopithecine herpesvirus 16

HHV-2:

Human herpesvirus 2

BoHV-1:

Bovine herpesvirus 1

CeHV-1:

Cercopithecine herpesvirus 1

SuHV-1:

Suid herpesvirus 1

HHV-1:

Human herpesvirus 1

HHV-7:

Human herpesvirus 7

PCMV:

Porcine cytomegalovirus

MCMV:

Murine cytomegalovirus

HHV-6:

Human herpesvirus 6

HHV-5:

Human herpesvirus 5

HHV-8:

Human herpesvirus 8

BoHV-4:

Bovine herpesvirus 4

SaHV-2:

Saimiriine herpesvirus 2

EHV-2:

Equid herpesvirus 2

MDPV:

Muscovy duck parvovirus

Prv:

Pseudorabies virus

Gpv:

Goose parvovirus

References

  1. Roizman B, Pellett PE (2001) The family herpesviridae: a brief introduction. Field Virol 2:2381–2397

    Google Scholar 

  2. Park R, Baines JD (2006) Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80:494–504. doi:10.1128/JVI.80.1.494-504.2006

    Article  CAS  PubMed  Google Scholar 

  3. Simpson-Holley M, Colgrove RC, Nalepa G et al (2005) Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol 79:12840–12851. doi:10.1128/JVI.79.20.12840-12851.2005

    Article  CAS  PubMed  Google Scholar 

  4. Chang PC, Hsieh ML, Shien JH et al (2001) Complete nucleotide sequence of avian paramyxovirus type 6 isolated from ducks. J Gen Virol 82:2157–2168

    CAS  PubMed  Google Scholar 

  5. Dal Monte P, Pignatelli S, Zini N (2002) Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 83:1005–1012

    CAS  PubMed  Google Scholar 

  6. Gonnella R, Farina A, Santarelli R et al (2005) Characterization and intracellular localization of the epstein-barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79:3713–3727. doi:10.1128/JVI.79.6.3713-3727.2005

    Article  CAS  PubMed  Google Scholar 

  7. Lake CM, Hutt-Fletcher LM (2004) The epstein-barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 320:99–106. doi:10.1016/j.virol.2003.11.018

    Article  CAS  PubMed  Google Scholar 

  8. Simpson-Holley M, Baines J, Roller R et al (2004) Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 78:5591–5600. doi:10.1128/JVI.78.11.5591-5600.2004

    Article  CAS  PubMed  Google Scholar 

  9. Reynolds AE, Liang L, Baines JD (2004) Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34. J Virol 78:5564–5575. doi:10.1128/JVI.78.11.5564-5575.2004

    Article  CAS  PubMed  Google Scholar 

  10. Zhu HY, Yamada H, Jiang YM et al (1999) Intracellular localization of the UL31 protein of herpes simplex virus type 2. Arch Virol 144:1923–1935. doi:10.1007/s007050050715

    Article  CAS  PubMed  Google Scholar 

  11. Klupp BG, Granzow H, Fuchs W et al (2007) Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci USA 104:7241–7246. doi:10.1073/pnas.0701757104

    Article  CAS  PubMed  Google Scholar 

  12. Helferich D, Veits J, Mettenleiter TC et al (2007) Identification of transcripts and protein products of the UL31, UL37, UL46, UL47, UL48, UL49 and US4 gene homologues of avian infectious laryngotracheitis virus. J Gen Virol 88:719–731. doi:10.1099/vir.0.82532-0

    Article  CAS  PubMed  Google Scholar 

  13. Mou F, Forest T, Baines JD (2007) US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol 81:6459–6470. doi:10.1128/JVI.00380-07

    Article  CAS  PubMed  Google Scholar 

  14. Schnee M, Ruzsics Z, Bubeck A et al (2006) Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 80:11658–11666. doi:10.1128/JVI.01662-06

    Article  CAS  PubMed  Google Scholar 

  15. Davison S, Converse KA, Hamir AN et al (1993) Duck viral enteritis in Muscovy ducks in Pennsylvania. Avian Dis 37:1142–1146. doi:10.2307/1591927

    Article  CAS  PubMed  Google Scholar 

  16. Montali RJ, Bush M, Greenwell GA (1976) An epornitic of duck viral enteritis in a zoological park. J Am Vet Med Assoc 169:954–958

    CAS  PubMed  Google Scholar 

  17. Proctor SJ (1976) Pathogenesis of duck plague in the bursa of fabricius, thymus, and spleen. Am J Vet Res 37:427–431

    CAS  PubMed  Google Scholar 

  18. Baudet AE (1923) Mortality in ducks in the Netherlands caused by a filterable virus: fowl plague. Tijdschr Diergeneeskd 55:455–459

    Google Scholar 

  19. Leibovitz L, Hwang J (1968) Duck plague on the American continent. Avian Dis 12:361–378. doi:10.2307/1588237

    Article  CAS  PubMed  Google Scholar 

  20. Jansen J, Kunst H (1964) The reported incidence of duck plague in Europe and Asia. Tijdschr Diergeneeskd 89:765–769

    Google Scholar 

  21. Lucam F (1949) La peste aviaire en France. Repoc 14th Int Vet Congr 2:380–382

  22. Saif YM, Barnes HJ, Glisson JR et al (2003) Diseases of poultry, 11th edn. Lowa State University Press, Ames

    Google Scholar 

  23. Fauquet CM, Mayo MA, Maniloff J (2005) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, California

    Google Scholar 

  24. Gardner R, Wilkerson J, Johnson JC (1993) Molecular characterization of the DNA of Anatid herpesvirus 1. Intervirology 36:99–112

    CAS  PubMed  Google Scholar 

  25. Cheng AC, Wang MS, Wen M (2006) Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technol Lett 16:948–953

    CAS  Google Scholar 

  26. Oraveerakul K, Choi CS, Molitor TW (1990) Detection of porcine parvovirus using nonradioactive nucleic acid hybridization. J Vet Diagn Invest 2:85–91

    CAS  PubMed  Google Scholar 

  27. Altschul SF, Madden TL, Schaffer AA et al (1997) A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  28. Bendtsen JD, Nielsen H, von Heijne G et al (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795. doi:10.1016/j.jmb.2004.05.028

    Article  PubMed  Google Scholar 

  29. Higgins DG, Bleasby AJ, Fuchs R (2002) CLUSTAL V: improved software for multiple sequence alignment. Oxford University Press, Oxford

    Google Scholar 

  30. Higgins DG (1994) CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol 25:307–318. doi:10.1385/0-89603-276-0:307

    CAS  PubMed  Google Scholar 

  31. Page RDM (1996) Tree view: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  32. Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  33. Van Regenmortel MH (1992) Protein antigenicity. Mol Biol Rep 16:133–138. doi:10.1007/BF00464700

    Article  PubMed  Google Scholar 

  34. Xie W, Cheng AC, Wang MS, Chang H et al (2009) Expression and characterization of the UL31 protein from Duck enteritis virus. Virol J 6:19. doi:10.1186/1743-422x-6-9

    Article  PubMed  Google Scholar 

  35. Towbin H, Staehelin T, Gordin J (1976) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. doi:10.1073/pnas.76.9.4350

    Article  Google Scholar 

  36. Leary JJ, Brigati DJ, Ward DC (1983) Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: bio-blots. Proc Natl Acad Sci USA 80:4045–4049. doi:10.1073/pnas.80.13.4045

    Article  CAS  PubMed  Google Scholar 

  37. Chang YE, Van Sant C, Krug PW (1997) The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 11:8307–8315

    Google Scholar 

  38. Klupp BG, Granzow H, Fuchs W (2004) Pseudorabies virus UL3 gene codes for a nuclear protein which is dispensable for viral replication. J Virol 1:464–4672

    Article  Google Scholar 

  39. Fuchs W, Klupp BG, Mettenleiter TC (2002) The interacting UL31 and UL34 gene products of Pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. Virology 76:364–378. doi:10.1128/JVI.76.1.364-378.2002

    Article  CAS  Google Scholar 

  40. Mark L, Zsolt R, Ulrich HK (2006) Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 80:73–84. doi:10.1128/JVI.80.1.73-84.2006

    Article  Google Scholar 

  41. McGeoch DJ, Cook S (1994) Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescal. J Mol Biol 238:9–22. doi:10.1006/jmbi.1994.1264

    Article  CAS  PubMed  Google Scholar 

  42. Bjerke SL, Roller RJ (2006) Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347:261–276. doi:10.1016/j.virol.2005.11.053

    Article  CAS  PubMed  Google Scholar 

  43. Reynolds AE, Ryckman BJ, Baines JD (2001) U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75:8803–8817. doi:10.1128/JVI.75.18.8803-8817.2001

    Article  CAS  PubMed  Google Scholar 

  44. Yamauchi Y, Shiba C, Goshima F, Nawa A (2001) Herpes simplex virus type 2 UL34 protein requires UL31 protein for its relocation to the internal nuclear membrane in transfected cells. J Gen Virol 82:1423–1428

    CAS  PubMed  Google Scholar 

  45. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828. doi:10.1073/pnas.78.6.3824

    Article  CAS  PubMed  Google Scholar 

  46. Welling GW, Weijer WJ (1985) Prediction of sequential antigenic regions in proteins. FEBS Lett 188:215–218. doi:10.1016/0014-5793(85)80374-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (30771598), Changjiang Scholars and Innovative Research Team in University(IRT0848), the earmarked fund for Modern Agro-industry Technology Research System (2009–2013), New Century Excellent Talents Program in University (NCET-06-0818), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (706050), the Cultivation Fund of the Key Scientific and Technical Innovation Project, department of Education of Sichuan Province (07ZZ028), Sichuan Province Outstanding Youths Fund (07ZQ026-132), and Sichuan Province Basic Research Program (07JY029-016/07JY029-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchun Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Cheng, A., Wang, M. et al. Molecular cloning and characterization of the UL31 gene from Duck enteritis virus. Mol Biol Rep 37, 1495–1503 (2010). https://doi.org/10.1007/s11033-009-9546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9546-y

Keywords

Navigation