Skip to main content
Log in

Connexin43 interacts with Caveolin-3 in the heart

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Gap junctions (GJs), collections of multiple intercellular channels between neighboring cells, are specialized channels facilitating intercellular electrical and chemical communication. GJs are important for synchronizing coupling and coordinated contraction in the heart, and are crucial regulators of heart gene transcription, cardiac development, and protection of ischemic cardiomyocytes through second messenger communication. Identification of proteins that interact with Connexin43 (Cx43), the predominant protein in cardiac GJs, may contribute to the understanding of GJ functional regulation. Using a yeast two-hybrid system, we identified Caveolin-3 (Cav3) as a new Cx43-interacting protein. This interaction was confirmed by co-immunoprecipitation and co-localization experiments. CX43 interacts with Cav3, suggesting that Cav3 may participate in the functional regulation of GJs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277:36725–36730. doi:10.1074/jbc.M109797200

    Article  CAS  PubMed  Google Scholar 

  2. Saffitz JE, Laing JG, Yamada KA (2000) Connexin expression and turnover: implications for cardiac excitability. Circ Res 86:723–728

    CAS  PubMed  Google Scholar 

  3. Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339

    CAS  PubMed  Google Scholar 

  4. Kaplan SR, Gard JJ, Protonotarios N, Tsatsopoulou A, Spiliopoulou C, Anastasakis A, Squarcioni CP, McKenna WJ, Thiene G, Basso C, Brousse N, Fontaine G, Saffitz JE (2004) Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm 1:3–11. doi:10.1016/j.hrthm.2004.01.001

    Article  PubMed  Google Scholar 

  5. Carvajal-Huerta L (1998) Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J Am Acad Dermatol 39:418–421. doi:10.1016/S0190-9622(98)70317-2

    Article  CAS  PubMed  Google Scholar 

  6. Smith JH, Green CR, Peters NS, Rothery S, Severs NJ (1991) Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol 139:801–821

    CAS  PubMed  Google Scholar 

  7. Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359–371. doi:10.1006/jmcc.2000.1308

    Article  CAS  PubMed  Google Scholar 

  8. Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88:864–875

    CAS  PubMed  Google Scholar 

  9. Daleau P, Boudriau S, Michaud M, Jolicoeur C, Kingma JG Jr (2001) Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution. Can J Physiol Pharmacol 79:371–378. doi:10.1139/cjpp-79-5-371

    Article  CAS  PubMed  Google Scholar 

  10. Peters NS, Coromilas J, Severs NJ, Wit AL (1997) Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95:988–996

    CAS  PubMed  Google Scholar 

  11. Matsumoto M, Hsieh TY, Zhu N, VanArsdale T, Hwang SB, Jeng KS, Gorbalenya AE, Lo SY, Ou JH, Ware CF, Lai MM (1997) Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-beta receptor. J Virol 71:1301–1309

    CAS  PubMed  Google Scholar 

  12. Lin J, Friesen MT, Bocangel P, Cheung D, Rawszer K, Wigle JT (2005) Characterization of Mesenchyme Homeobox 2 (MEOX2) transcription factor binding to RING finger protein 10. Mol Cell Biochem 275:75–84. doi:10.1007/s11010-005-0823-3

    Article  CAS  PubMed  Google Scholar 

  13. Engelman JA, Zhang X, Galbiati F, Volonte D, Sotgia F, Pestell RG, Minetti C, Scherer PE, Okamoto T, Lisanti MP (1998) Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am J Hum Genet 63:1578–1587. doi:10.1086/302172

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422. doi:10.1074/jbc.273.10.5419

    Article  CAS  PubMed  Google Scholar 

  15. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261. doi:10.1074/jbc.271.4.2255

    Article  CAS  PubMed  Google Scholar 

  16. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135. doi:10.1073/pnas.93.1.131

    Article  CAS  PubMed  Google Scholar 

  17. Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M, Bermudez J, Pedemonte M, Weidenheim KM, Pestell RG, Minetti C, Lisanti MP (2000) Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc Natl Acad Sci USA 97:9689–9694. doi:10.1073/pnas.160249097

    Article  CAS  PubMed  Google Scholar 

  18. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814. doi:10.1074/jbc.271.37.22810

    Article  CAS  PubMed  Google Scholar 

  19. Feron O, Dessy C, Opel DJ, Arstall MA, Kelly RA, Michel T (1998) Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J Biol Chem 273:30249–30254. doi:10.1074/jbc.273.46.30249

    Article  CAS  PubMed  Google Scholar 

  20. Venema VJ, Ju H, Zou R, Venema RC (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272:28187–28190. doi:10.1074/jbc.272.45.28187

    Article  CAS  PubMed  Google Scholar 

  21. Aravamudan B, Volonte D, Ramani R, Gursoy E, Lisanti MP, London B, Galbiati F (2003) Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype. Hum Mol Genet 12:2777–2788. doi:10.1093/hmg/ddg313

    Article  CAS  PubMed  Google Scholar 

  22. Bossuyt J, Taylor BE, James-Kracke M, Hale CC (2002) The cardiac sodium–calcium exchanger associates with caveolin-3. Ann N Y Acad Sci 976:197–204

    Article  CAS  PubMed  Google Scholar 

  23. Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–2112. doi:10.1161/CIRCULATIONAHA.106.635268

    Article  CAS  PubMed  Google Scholar 

  24. Schubert AL, Schubert W, Spray DC, Lisanti MP (2002) Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41:5754–5764. doi:10.1021/bi0121656

    Article  CAS  PubMed  Google Scholar 

  25. Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074. doi:10.1161/CIRCULATIONAHA.107.731679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (project number 30600254). We gratefully acknowledge the assistance of Dr. Yucai Fu, Laboratory of Cell Senescence, Shantou University Medical College, for helpful suggestions and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Li, Y., Lin, J. et al. Connexin43 interacts with Caveolin-3 in the heart. Mol Biol Rep 37, 1685–1691 (2010). https://doi.org/10.1007/s11033-009-9584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9584-5

Keywords

Navigation