Skip to main content

Advertisement

Log in

Dominant-positive HSF1 decreases alpha-synuclein level and alpha-synuclein-induced toxicity

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alpha-synuclein aggregation and cytotoxicity are widely considered to play a critical role in the process of Parkinson’s disease. Heat shock proteins are a large family of cellular protective molecules in most kinds of cells. In this study, we examined the impact of dominant-positive heat shock transcription factor 1 (HSF1) on alpha-synuclein over-expression cellular model of Parkinson’s disease. We found that over-expression of alpha-synuclein could form alpha-synuclein immunopositive inclusions and result in cell death; dominant-positive HSF1 dramatically increased the expression of HSP70 in SH-SY5Y cells, and significantly decreased the level and cytotoxicity of alpha-synuclein. Taken together, these data indicate that dominant-positive HSF1 plays an important role in suppressing alpha-synuclein aggregation and toxicity in SH-SY5Y cells. Parkinson’s disease which is marked by alpha-synuclein aggregation may be treated by increasing a set of endogenous heat shock proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eriksen JL, Dawson TM, Dickson DW, Petrucelli L (2003) Caught in the act: alpha-synuclein is the culprit in Parkinson’s disease. Neuron 40:453–456. doi:10.1016/S0896-6273(03)00684-6

    Article  CAS  PubMed  Google Scholar 

  2. Mochizuki H, Yamada M, Mizuno Y (2006) Alpha-synuclein overexpression model. J Neural Transm Suppl 70:281–284. doi:10.1007/978-3-211-45295-0_44

    Article  CAS  PubMed  Google Scholar 

  3. Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 866:33–43. doi:10.1016/S0006-8993(00)02215-0

    Article  CAS  PubMed  Google Scholar 

  4. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169. doi:10.1016/S0140-6736(04)17103-1

    Article  CAS  PubMed  Google Scholar 

  5. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841. doi:10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  6. Dawson T, Mandir A, Lee M (2002) Animal models of PD: pieces of the same puzzle? Neuron 35:219–222. doi:10.1016/S0896-6273(02)00780-8

    Article  CAS  PubMed  Google Scholar 

  7. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398. doi:10.1038/35006074

    Article  CAS  PubMed  Google Scholar 

  8. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775. doi:10.1126/science.1090439

    Article  CAS  PubMed  Google Scholar 

  9. Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502. doi:10.1074/jbc.M400255200

    Article  CAS  PubMed  Google Scholar 

  10. McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Breakefield XO, Hyman BT (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83:846–854. doi:10.1046/j.1471-4159.2002.01190.x

    Article  CAS  PubMed  Google Scholar 

  11. Zourlidou A, Payne Smith MD, Latchman DS (2004) HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 88:1439–1448

    Article  CAS  PubMed  Google Scholar 

  12. McLean PJ, Klucken J, Shin Y, Hyman BT (2004) Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 321:665–669. doi:10.1016/j.bbrc.2004.07.021

    Article  CAS  PubMed  Google Scholar 

  13. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868. doi:10.1126/science.1067389

    Article  CAS  PubMed  Google Scholar 

  14. Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733–14740. doi:10.1074/jbc.M413024200

    Article  CAS  PubMed  Google Scholar 

  15. Voellmy R (2005) Dominant-positive and dominant-negative heat shock factors. Methods 35:199–207. doi:10.1016/j.ymeth.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  16. Wagstaff MJ, Smith J, Collaco-Moraes Y, de Belleroche JS, Voellmy R, Coffin RS, Latchman DS (1998) Delivery of a constitutively active form of the heat shock factor using a virus vector protects neuronal cells from thermal or ischaemic stress but not from apoptosis. Eur J NeuroSci 10:3343–3350. doi:10.1046/j.1460-9568.1998.00339.x

    Article  CAS  PubMed  Google Scholar 

  17. Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A (2005) Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 280:34908–34916. doi:10.1074/jbc.M506288200

    Article  CAS  PubMed  Google Scholar 

  18. McLean PJ, Kawamata H, Hyman BT (2001) Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901–912. doi:10.1016/S0306-4522(01)00113-0

    Article  CAS  PubMed  Google Scholar 

  19. Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 280:2873–2878. doi:10.1074/jbc.M412106200

    Article  CAS  PubMed  Google Scholar 

  20. Liu F, Nguyen JL, Hulleman JD, Li L, Rochet JC (2008) Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson’s disease. J Neurochem 105:2435–2453

    Article  CAS  PubMed  Google Scholar 

  21. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    CAS  PubMed  Google Scholar 

  22. Lee M, Hyun D, Halliwell B, Jenner P (2001) Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem 76:998–1009. doi:10.1046/j.1471-4159.2001.00149.x

    Article  CAS  PubMed  Google Scholar 

  23. Zhao DL, Zou LB, Zhou LF, Zhu P, Zhu HB (2007) A cell-based model of alpha-synucleinopathy for screening compounds with therapeutic potential of Parkinson’s disease. Acta Pharmacol Sin 28:616–626. doi:10.1111/j.1745-7254.2007.00539.x

    Article  CAS  PubMed  Google Scholar 

  24. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    CAS  PubMed  Google Scholar 

  25. Hayashita-Kinoh H, Yamada M, Yokota T, Mizuno Y, Mochizuki H (2006) Down-regulation of alpha-synuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson’s disease rat model. Biochem Biophys Res Commun 341:1088–1095. doi:10.1016/j.bbrc.2006.01.057

    Article  CAS  PubMed  Google Scholar 

  26. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi:10.1016/j.cell.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  27. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46. doi:10.1006/exnr.2002.8050

    Article  CAS  PubMed  Google Scholar 

  28. Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010–1017. doi:10.1046/j.1471-4159.2001.00302.x

    Article  CAS  PubMed  Google Scholar 

  29. Opazo F, Krenz A, Heermann S, Schulz JB, Falkenburger BH (2008) Accumulation and clearance of alpha-synuclein aggregates demonstrated by time-lapse imaging. J Neurochem 106:529–540. doi:10.1111/j.1471-4159.2008.05407.x

    Article  CAS  PubMed  Google Scholar 

  30. Fan GH, Zhou HY, Yang H, Chen SD (2006) Heat shock proteins reduce alpha-synuclein aggregation induced by MPP + in SK-N-SH cells. FEBS Lett 580:3091–3098. doi:10.1016/j.febslet.2006.04.057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the grants from Guangdong Natural Science Foundation (6026372) and Guangdong Institute of Chinese Medicine (1060165). We sincerely thank Dr. Richard Voellmy for his generous gift of the plasmid pcDNA-HSF1(+).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zou Jiangying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liangliang, X., Yonghui, H., Shunmei, E. et al. Dominant-positive HSF1 decreases alpha-synuclein level and alpha-synuclein-induced toxicity. Mol Biol Rep 37, 1875–1881 (2010). https://doi.org/10.1007/s11033-009-9623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9623-2

Keywords

Navigation