Skip to main content
Log in

Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MDM2, Pirh2 and COP1 are important E3 ubiquitin ligases, which directly interact with p53 and target p53 for proteasome-mediated degradation. MDMX, the MDM2 homologous protein, inhibits p53-mediated transcription activity. The interplay between MDM2, MDMX, Pirh2 and COP1 has not been reported, except the interaction between MDM2 and MDMX. Here, we reported that there were interactions between these four proteins independently of p53. The protein levels of MDM2, MDMX, Pirh2 and COP1 changed when any two of them were co-transfected. Our data also showed that the integrity of MDM2 RING finger domain was crucial for its ability to elevate the protein levels of COP1 and Pirh2. Any two of these four proteins could inhibit p53-mediated transcriptional activity synergistically. Furthermore, COP1 inhibited MDM2 self-ubiquitination and interfered with MDMX ubiquitination by MDM2. Our results suggest that MDM2, MDMX, Pirh2 and COP1 might inhibit p53 activity synergistically in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  2. Wu M, Mao C, Chen Q, Cu X-W, Zhang W.S (2010) Serum p53 protein and anti-p53 antibodies are associated with increased cancer risk: a case-control study of 569 patients and 879 healthy controls. Mol Biol Rep 37:339–343

    Google Scholar 

  3. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  4. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    Article  CAS  PubMed  Google Scholar 

  5. Fang SY, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951

    Article  CAS  PubMed  Google Scholar 

  6. Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin Ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476

    Article  CAS  PubMed  Google Scholar 

  7. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  CAS  PubMed  Google Scholar 

  8. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M (1999) MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447:5–9

    Article  CAS  PubMed  Google Scholar 

  9. Shvarts A, Steegenga WT, Riteco N, vanLaar T, Dekker P, Bazuine M, vanHam RCA, vanOordt WV, Hateboer G, vanderEb AJ, ochemsen AG (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15:5349–5357

    CAS  PubMed  Google Scholar 

  10. Shvarts A, Bazuine M, Dekker P, Ramos YFM, Steegenga WT, Merckx G, van Ham RCA, van der Houven van Oordt W, van der Eb AJ, Jochemsen AG (1997) Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 43:34–42

    Article  CAS  PubMed  Google Scholar 

  11. de Graaf P, Little NA, Ramos YFM, Meulmeester E, Letteboer SJF, Jochemsen AG (2003) Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem 278:38315–38324

    Article  PubMed  Google Scholar 

  12. Pan Y, Chen JD (2003) MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 23:5113–5121

    Article  CAS  PubMed  Google Scholar 

  13. Jackson MW, Berberich SJ (2000) MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 20:1001–1007

    Article  CAS  PubMed  Google Scholar 

  14. Stad R, Ramos YFM, Little N, Grivell S, Attema J, van der Eb AJ, Jochemsen AG (2000) Hdmx stabilizes Mdm2 and p53. J Biol Chem 275:28039–28044

    CAS  PubMed  Google Scholar 

  15. Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP, Saville MK, Jochemsen AG (2001) Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2:1029–1034

    Article  CAS  PubMed  Google Scholar 

  16. Leng RP, Lin YP, Ma WL, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791

    Article  CAS  PubMed  Google Scholar 

  17. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O’ Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92

    Article  CAS  PubMed  Google Scholar 

  18. Barak Y, Juven T, Haffner R, Oren M (1993) Mdm2 expression is induced by wild type-P53 activity. EMBO J 12:461–468

    CAS  PubMed  Google Scholar 

  19. Xian L, Zhao J, Wang J, Fang Z, Peng B, Wang W, Ji X, Yu L (2009) p53 Promotes proteasome-dependent degradation of oncogenic protein HBx by transcription of MDM2. Mol Biol Rep. doi:10.1007/s11033-009-9855-1

  20. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Lin J, Levine AJ (1995) Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol Med 1:142–152

    CAS  PubMed  Google Scholar 

  22. Marine JC, Jochemsen AG (2004) Mdmx and Mdm2—brothers in arms? Cell Cycle 3:900–904

    CAS  PubMed  Google Scholar 

  23. Gilkes DM, Pan Y, Coppola D, Yeatman T, Reuther GW, Chen JD (2008) Regulation of MDMX expression by mitogenic signaling. Mol Cell Biol 28:1999–2010

    Article  CAS  PubMed  Google Scholar 

  24. Strachan GD, Rallapalli R, Pucci B, Lafond TP, Hall DJ (2001) A transcriptionally inactive E2F-1 targets the MDM family of proteins for proteolytic degradation. J Biol Chem 276:45677–45685

    Article  CAS  PubMed  Google Scholar 

  25. Gentiletti F, Mancini F, D’Angelo M, Sacchi A, Pontecorvi A, Jochemsen AG, Moretti F (2002) MDMX stability is regulated by p53-induced caspase cleavage in NIH3T3 mouse fibroblasts. Oncogene 21:867–877

    Article  CAS  PubMed  Google Scholar 

  26. Meulmeester E, Maurice MM, Boutell C, Teunisse A, Ovaa H, Abraham TE, Dirks RW, Jochemsen AG (2005) Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell 18:565–576

    Article  CAS  PubMed  Google Scholar 

  27. Logan IR, Sapountzi V, Gaughan L, Neal DE, Robson CN (2004) Control of human PIRH2 protein stability—involvement of TIP60 and the proteasome. J Biol Chem 279:11696–11704

    Article  CAS  PubMed  Google Scholar 

  28. Zheng G, Ning JY, Yang YC (2007) PLAGL2 controls the stability of Pirh2, an E3 ubiquitin ligase for p53. Biochem Biophys Res Commun 364:344–350

    Article  CAS  PubMed  Google Scholar 

  29. Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, O’Rourke K, Seshagiri S, Dixit VM (2006) ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313:1122–1126

    Article  CAS  PubMed  Google Scholar 

  30. Wade M, Wahl GM (2009) Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res 7:1–11

    Article  CAS  PubMed  Google Scholar 

  31. Duan WR, Gao L, Druhan LJ, Zhu WG, Morrison C, Otterson GA, Villalona-Calero MA (2004) Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst 96:1718–1721

    Article  CAS  PubMed  Google Scholar 

  32. Dornan D, Bheddah S, Newton K, Ince W, Frantz GD, Dowd P, Koeppen H, Dixit VM, French DM (2004) COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 64:7226–7230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chenji Wang for supply of COP1 expression vector, Qian Wang for discussions and Zhen Zhang from University of Wisconsin for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2010_99_MOESM1_ESM.tif

Supplemental Fig. 1 (A) 4 × 105 H1299 cells in six-well plate were transfected with myc-MDM2 (300ng), myc-MDM2-C464A (300 ng), myc-Pirh2 (100 ng), HA-MDMX (500 ng) and FLAG-Ub (1 μg) expression vectors as indicated. (B) 4 × 105 H1299 cells in six-well plate were transfected with myc-MDM2 (1 μg), myc-MDM2-C464A (1μg), myc-MDMX (300 ng), HA-Pirh2 (200 ng) and FLAG-Ub (1 μg) expression vectors as indicated. (C) 4 × 105 H1299 cells in six-well plate were transfected with myc-Pirh2 (400 ng), FLAG-COP1 (600 ng) and HA-Ub (1 μg) expression vectors as indicated. (D) 4 × 105 H1299 cells in six-well plate were transfected with myc-MDM2 (300 ng), myc-MDM2-C464A (300 ng), myc-MDMX (300 ng), myc-Pirh2 (100 ng), FLAG-COP1 (1 μg) and HA-Ub (1 μg) expression vectors as indicated. (E) 4 × 105 H1299 cells in six-well plate were transfected with myc-MDM2 (1 μg), myc-MDM2-C464A (1 μg), HA-MDMX (300 ng), HA-Pirh2 (200 ng), and FLAG-Ub (1μg) expression vectors as indicated. Cells were treated with 20 μM MG132 for 8h before harvested. Whole cell lysates (WCL) were analyzed by direct immunoblotting (IB) and detected using indicated antibodies in each figure. In figure (A) and (B), immunoprecipitations (IP) were performed using anti-HA antibody. The precipitated proteins were analyzed by immunoblotting and detected using anti-FLAG antibody. In figure (C) and (D), immunoprecipitations were performed using anti-myc and anti-FLAG antibody, respectively. The precipitated proteins were analyzed by immunoblotting and detected using anti-HA antibody. In figure (E), immunoprecipitations were performed using anti-myc antibody. The precipitated proteins were analyzed by immunoblotting and detected using anti-FLAG antibody. (TIFF 33404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., He, G., Zhang, P. et al. Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53. Mol Biol Rep 38, 229–236 (2011). https://doi.org/10.1007/s11033-010-0099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0099-x

Keywords

Navigation